

ECO 650: Final Exam 2020 (2 hours)

1 Entry and switching costs (12. pts)

Consumers of mass 1 are uniformly distributed over a segment [0, 1]. We consider a two-period model.

- In t = 1, only an incumbent firm I is located in 0. We assume that a share 0 < K1 ≤ 1 of consumers buy from I in t = 1.
- In t = 2, an entrant E may enter at a fixed cost F and locate in 1.
 A consumer located in x incurs -x as a desutility to buy in I and -(1-x) to buy in 1. Prices set by I and E are respectively denoted p_I and p_E. Among the two periods, consumers redraw their type and a consumer who has bought from I in t = 1 has to incur an additional switching cost z in t = 2 to buy from E.

Assume E has entered.

1. Determine the demand in t = 2 from consumers who have not bought from I in t = 1. A consumer who has not bought from I in t = 1 and is located in x in t = 2 decides to buy from I if $p_I + x < p_E + (1 - x) \rightarrow \tilde{x} = \frac{1 + p_E - p_I}{2}$.

- 2. Determine the demand in t = 2 from consumers who have bought from I in t = 1. A consumer who has bought from I in t = 1 and is located in x decides to buy from I if $p_I + x < p_E + (1 x) + z \rightarrow \hat{x} = \tilde{x} + \frac{z}{2}$.
- 3. Assume that $\hat{x} < 1$ (small switching costs), determine the total demand and profit for firm I and E in t = 2 and the corresponding Nash equilibrium in prices and profits in t = 2.

Total demand for firm I is $D_I(p_I, p_E, K1) = K1(\tilde{x} + \frac{z}{2}) + (1 - K1)\tilde{x}$ and a profit $\Pi_I(p_I, p_E, K1) = p_I(K1(\tilde{x} + \frac{z}{2}) + (1 - K1)\tilde{x})$. Total demand for firm E is $D_E(p_I, p_E, K1) = K1(1 - \tilde{x} - \frac{z}{2}) + (1 - K1)(1 - \tilde{x})$ and the corresponding profit is $\Pi_E(p_I, p_E, K1) = p_E(K1(1 - \tilde{x} - \frac{z}{2}) + (1 - K1)(1 - \tilde{x}))$ Best reaction functions are :

$$\frac{\partial \Pi_I}{\partial p_I} = 0 \Rightarrow p_I(p_E, K1) = \frac{1}{2}p_E + \frac{1}{2}(1 + K1z)$$
$$\frac{\partial \Pi_E}{\partial p_E} = 0 \Rightarrow p_E(p_I, K1) = \frac{1}{2}p_I + \frac{1}{2}(1 - K1z)$$

Nash equilibrium prices and profits is:

$$p_I^* = 1 + \frac{K1z}{3}, p_E^* = 1 - \frac{K1z}{3}$$
$$\Pi_I^* = \frac{(3 + K1z)^2}{18}, \Pi_E^* = \frac{(3 - K1z)^2}{18}$$

4. Assume that $\hat{x} > 1$ (large switching costs), determine the total demand and profit for firm I and E in t = 2 and the corresponding Nash equilibrium in prices and profits in t = 2. Total demand for firm I is $D_I(p_I, p_E, K1) = K1 + (1 - K1)\tilde{x}$ and a profit $\Pi_I(p_I, p_E, K1) = p_I(K1 + (1 - K1)\tilde{x})$. Total demand for firm E is $D_E(p_I, p_E, K1) = (1 - K1)(1 - \tilde{x})$ and the corresponding profit is $\Pi_E(p_I, p_E, K1) = p_E((1 - K1)(1 - \tilde{x}))$ Best reaction functions are :

$$\frac{\partial \Pi_I}{\partial p_I} = 0 \Rightarrow p_I(p_E, K1) = \frac{1}{2}p_E + \frac{1+K1}{2(1-K1)}$$
$$\frac{\partial \Pi_E}{\partial p_E} = 0 \Rightarrow p_E(p_I, K1) = \frac{1}{2}p_I + \frac{1}{2}$$

Nash equilibrium prices and profits are:

$$p_I^* = \frac{3+K1}{3(1-K1)}, p_E^* = \frac{3-K1}{3(1-K1)}$$
$$\Pi_I^* = \frac{(3+K1)^2}{18(1-K1)}, \Pi_E^* = \frac{(3-K1)^2}{18(1-K1)}$$

5. Assume now that a non strategic firm I, i.e. an incumbent who does not anticipate the entry of E in t = 2 would set $K1 = \frac{1}{2}$ in t = 1. This means that $K_1 = \frac{1}{2}$ is the maximum of the first period profit. When taking into account the second period profit, the sign of the derivative of the this profit with respect to K_1 indicates how I distort K1.

More precisely:

- (a) When switching costs are small $(\hat{x} < 1)$.
 - To deter E 's entry? I wants to overinvest $:\!\frac{\partial \Pi_E^*}{\partial K_1} < 0$
 - To accomodate E's entry? I wants to overinvest $:\frac{\partial \Pi_I^r}{\partial K_1} > 0$
 - What is the name of this strategy in the Fudenberg-Tirole taxonomy? Explain. Top dog- Top dog

- (b) When switching costs are large $(\hat{x} > 1$). Does I overinvest or underinvest in K1
 - To deter E's entry? I wants to under invest : $\frac{\partial \Pi_E^*}{\partial K_1} > 0$
 - To accomodate E's entry? I wants to overinvest: $\frac{\partial \Pi_I^*}{\partial K_1} > 0$
 - What is the name of this strategy in the Fudenberg-Tirole taxonomy? Explain. Lean and hungry look- Top dog

2 Bundling (8 pts)

Two consumers A and B have the following valuations for Sport tickets:

Consumers	5 Basket	5 Tennis
Type A	90	50
Type B	70	40

On an annual basis, SPORT 24 offer annual supscription for basketball and Tennis games. Each game costs 5 euros to the Company. Sport 24 cannot discriminate among consumers. To simplify, consider that there is 1 consumer of each type (A and B).

Questions:

- 1. Determine the best pricing strategy for SPORT 24 if it offers an annual card fee per sport type? (2 pts) $p_B = 70 \ \pi_B = (70-25).2 = 90 \ p_T = 40 \ \pi_B = (40-25).2 = 30$ Total profit is 120.
- Determine the optimal price for SPORT 24 if it offers only a Gold card membership (Full access to all games- pure bundling)? (2 pts)
 p_b = 110 and Π_b = 2.(110 50) = 120. Bundling is not profitable.

3. Consumers now have the following valuations:

Consumers	5 Basket	5 Tennis
Type A	90	50
Type B	40	70

Answer to the same questions (1) and (2). (2 pts) $p_B = 90$, $\pi_B = (90 - 25) = 55$ and $P_T = 50$ with $\Pi_T = (50 - 25).2 = 50$. Total profit is 105 and $\pi_b = 2.(110 - 50) = 120$.

4. In which case bundling is the most profitable? Explain. (2 pts) Bundling is profitable in the second case because consumer's valuation are negatively correlated.