[Buying power of retailers](#page-1-0) [Bargaining Theory](#page-4-0) [Bargaining in a vertical chain](#page-16-0)

ECO 650: Firms' Strategies and Markets Vertical Relationships and Bargaining(II)

Claire Chambolle

20/11/2024

1/30

Kロメ K個 K K ミメ K ミレー ミーの Q Q

2/30

 $2Q$

Buying power of retailers

A retailer is an intermediary: he buys products to suppliers and resells them to consumers.

The high concentration on the retail market \Rightarrow buying power towards suppliers: heterogenous balance of power!!

*High concentration among manufacturers High**2/30**

Sources of buyer power

- ▶ Buyer size (larger discount?...)
- ▶ Gatekeeper positions (local monopoly on a market)
- \blacktriangleright Constrained capacity shelves space
- ▶ Outside options
	- ▶ Number of alternative suppliers vs alternative retailers. OECD (1998): "Retailer A has buyer power over supplier B if a decision to delist B's product could cause A's profit to decline by 0.1% and B's to decline by 10% ."
	- \blacktriangleright How differentiated ? Loyalty to the brand vs loyalty to the store; A survey by INSEE, 1997: When the favorite brand is not in its favorite store's shelves: 56% of consumers choose another brand, 24% will buy it later and 20% buy it in another store.
	- ▶ Private labels (since 70s): products sold under retailer's own brand

3/30

イロトイ団トイミドイミド (毛) の女の

[Buying power of retailers](#page-1-0) [Bargaining Theory](#page-4-0) [Bargaining in a vertical chain](#page-16-0)

[Sources of buyer power](#page-2-0) [Consequences of Buyer Power:](#page-3-0)

Consequences of Buyer Power: Potential Harms and **Benefits**

- ▶ Potential harms: Hold-up effect (reduction of investments), Exit of small suppliers in situation of economic dependence (reduction of variety,...).
- ▶ Benefits: A monopolist may prefer dealing with several retailers, and thus favor competition, to obtain higher profits.

4/30

KOXK@XKEXKEX E YORN

Methodological tool:Bargaining

- ▶ Bargaining: situation in which at least two players have a common interest to cooperate, but have conflicting interests over exactly how to co-operate.
- ▶ How to share a pie? Depends on:
	- \blacktriangleright The number of negotiators;
	- ▶ Each negotiator's "ability to negotiate", or "bargaining power";
	- ▶ Each negotiator's "outside option".
- ▶ "Bargaining theory with Applications", Muthoo (2004).

5/30

KO KKO KK ミドスミド (ミ) の女の

The Nash program (1950,1953)

▶ A bargaining problem with two players

- A vector $x = (x_1, x_2) \in \mathbb{R}^2$; x_i is the allocation of player *i*.
- A threat point $\underline{x} = (\underline{x}_1, \underline{x}_2) \in \mathbb{R}^2$;
- \blacktriangleright Players utility function $U_i(x)$.
- \blacktriangleright F is the set of feasible allocations: $F\bigcap \{(x_1,x_2)\in \mathbb{R}^2: x_1\geq \underline{x}_1, x_2\geq \underline{x}_2\}$ is nonempty and bounded.

Theorem

The Nash Bargaining Solution x^* satisfies:

$$
x^* \in \underset{x \in F}{argmax} (U_1(x_1) - U_1(\underline{x}_1))(U_2(x_2) - U_2(\underline{x}_2))
$$

6/30

イロメイタメイミメイミメーミ の女の

Five axioms

- ▶ Strong Pareto Optimality: the solution has to be realizable and Pareto optimal.
- ▶ Individual rationality: No player can have less than his outside option, otherwise he will not accept the "agreement".
- ▶ Invariance by an affine transformation: The result does not depend on the representation of (Von Neumann Morgenstern) utility functions.
- ▶ Independence of Irrelevant Alternatives: Eliminating alternatives that would not have been chosen, without changing the outside option, will not change the solution.
- ▶ Symmetry: Symmetric players receive symmetric payoffs.

7/30

Kロメ K個 K K ミメ K ミレー ミーの Q Q

Extension: The Nash bargaining solution with asymmetry Assume that the players have different bargaining powers, say *α* and $1 - \alpha$.

The Nash bargaining solution can be extended to that situation. It is the unique Pareto-optimal vector that satisfies:

$$
x^* \in \mathop{\textit{argmax}}_{x \in F} (U_1(x_1) - U_1(\underline{x}_1))^{\alpha} (U_2(x_2) - U_2(\underline{x}_2))^{1-\alpha}
$$

Split-The-Difference-Rule

► Let V denote the cake to be shared such that $x_1 = V - x_2$, $▶ U_i(x_i) = x_i$ (Risk neutral); $(α, 1 − α)$ the bargaining powers. The Nash bargaining solution (x_1^N, x_2^N) is:

$$
x_1^N = \underline{x}_1 + \alpha (V - \underline{x}_1 - \underline{x}_2)
$$

$$
x_2^N = \underline{x}_2 + (1-\alpha)(V - \underline{x}_1 - \underline{x}_2)
$$

8/30

The Rubinstein (1982) bargaining model

- ▶ Two players, 1 and 2, have to reach an agreement on the partition of a pie of size 1.
- ▶ Each of them has to make in turn a proposal as to how it should be divided:
	- At each period, one offer is made;
	- They alternate making offers.
	- Player 1 makes the first offer.
- \blacktriangleright Finite number T of periods.
- \blacktriangleright There is a discount factor δ by period.

9/30

K ロ X K @ X K ミ X K ミ X ミ X の Q Q C

[Buying power of retailers](#page-1-0) [Bargaining Theory](#page-4-0) [Bargaining in a vertical chain](#page-16-0)

The Rubinstein (1982) game for $T = 2$

Resolution of the Rubinstein game

- **E** Assume $T = 2$; in the second period, there is an equilibrium where 1 accepts any nonnegative offer by 2; 2 thus offers $(0, 1)$ (or $(\varepsilon, 1 - \varepsilon)$) to select equilibria); in period 1, 1 offers $(1 - \delta, \delta)$ and 2 accepts.
- ▶ Assume $T = 3$; in the third period, 1 makes the last offer and 2 accepts any nonnegative offer; 1 thus offers (1*,* 0); in period 2, 2 offers $(\delta, 1 - \delta)$ and 1 accepts; in period 1, 1 offers $(1 - \delta(1 - \delta), \delta(1 - \delta))$ and 2 accepts.
- ▶ By iteration, there is an equilibrium where 1 offers in the first period $(x_1 = 1 - \delta + ... + (-1)^{T-1} \delta^{T-1}, 1 - x_1).$

10 M + 12 M + 12 M + 12 M + 12 M + 23 M

Solution of the Rubinstein game

- ▶ At the limit, when $T \rightarrow +\infty$, the sharing of the pie is $(x_1=\frac{1}{1+\delta},1-x_1);$
- ▶ Impatience is the driving force that leads to an agreement, and it increases the power of the first player:
	- \triangleright When the two players are infinitely patient, their situations become symmetric: when $T \rightarrow +\infty$ and $\delta = 1$, the sharing of the pie is $(\frac{1}{2},\frac{1}{2})$;
	- \triangleright When the two players are infinitely impatient, player 1 gets the whole pie: when $T \to +\infty$ and $\delta = 0$, the sharing of the pie is (1,0).

10 → 12⁰ → 12 → 12 → 22 → 200 + 12/30

The Binmore-Rubinstein-Wolinsky (1986) bargaining model

- ▶ Two players 1 and 2 want to share a "pie" of value V
- \blacktriangleright Outside option: player *i* has a utility \underline{x}_i if negotiation breaks, where $x_1 + x_2 < V$;
- ▶ Players alternate making the same offers 1 offers $(x_1, V x_1)$ and 2 offers $(V - x_2, x_2)$;
- ▶ Infinite horizon; each time an offer is rejected, there is an exogenous risk of breakdown (end of the game) with a probability *ε* (no discounting).

13/30

[Buying power of retailers](#page-1-0) [Bargaining Theory](#page-4-0) [Bargaining in a vertical chain](#page-16-0)

Binmore-Rubinstein-Wolinsky (1986) game

KILLIN

14/30

R C

 \equiv

[Buying power of retailers](#page-1-0) [Bargaining Theory](#page-4-0) [Bargaining in a vertical chain](#page-16-0)

Binmore-Rubinstein-Wolinsky (1986): results

 \triangleright Any subgame perfect equilibrium involves player *i* indifferent between accepting or rejecting the offer of player j.

$$
V - x_1^* = \epsilon \underline{x}_2 + (1 - \epsilon) x_2^*
$$

$$
V - x_2^* = \epsilon \underline{x}_1 + (1 - \epsilon) x_1^*
$$

▶ The solution satisfies:

$$
x_i^* = \underline{x}_i + \frac{1}{2-\epsilon}(V - \underline{x}_1 - \underline{x}_2)
$$

► If both firms have the same bargaining power ($\epsilon \to 0$, $\alpha = 1/2$), in equilibrium, equal sharing of the surplus: $(\underline{x}_1 + \frac{V - \underline{x}_1 - \underline{x}_2}{2}; \underline{x}_2 + \frac{V - \underline{x}_1 - \underline{x}_2}{2}).$ This is the symmetric Nash bargaining solution.

► If $\epsilon \to 1$, the player that plays first has all the power and the other player gets its disagreement payoff.

10 X 15P X 12 X 12 X 1⁵ 20 30 15/30

Applications-Roadmap

- \triangleright Bargaining within buyer-seller relationship : The hold-up problem $+$ Exercise 1.
- ▶ Bargaining power in a vertical chain with upstream competition : Strategic restriction of retailer's shelf space capacity
- ▶ Bargaining power in a vertical chain with downstream competition : creating a buying group

16/30

KOXK@XKEXKEX E DAG

The hold-up Problem

Assumptions

Asset specificity: An investment brings more value when used by a particular buyer (matching, compatibility,...)

- An upstream seller S can produce a unit of good at cost $C(I)$.
- ▶ By investing *I* the unit cost decreases $C'(I) < 0$ but at a decreasing rate $C''(1) > 0$.
- \triangleright We assume that the investment *l* is "specific":
	- The cost is $C(I)$ if S makes a deal with a "specific" buyer B.
	- The cost is $C(\lambda I)$ if S makes a deal with any other buyers with $\lambda \in [0, 1]$.
	- λ is the degree of specificity of the investment for B with a complete specificity when $\lambda = 0$ and no specificity when $\lambda = 1$.

18/30

KOXK@XKEXKEX E DAG

Bargaining in a vertical chain

Assumptions

Incomplete contracts: Contracts cannot be written ex ante, i.e. before the investment decision is taken

- \blacktriangleright Irrespective of the buyer, an agreement between S and a buyer brings a value V.
- \blacktriangleright Formally we have a sequential stage game :
	- 1. An upstream seller S chooses its investment level I. Once the investment is realized, it is sunk.
	- 2. S bargains with B, following a Nash bargaining, over a contract T .

Bargaining stage

Maximize the Nash bargaining product:

$$
\underset{\mathcal{T}}{Max}[V-\mathcal{T}][\mathcal{T}-C(I)-(V-C(\lambda I))]
$$

⇔ the split-the-difference-rule:

$$
V - T = T - C(I) - (V - C(\lambda I)) \Rightarrow T = V + \frac{C(I) - C(\lambda I)}{2}
$$

In stage 2, the profit of the buyer is

$$
\Pi_B=\frac{C(\lambda I)-C(I)}{2}.
$$

 Π_B increases if λ decreases, i.e. as the specificity of the investment increases. The profit of the seller is

$$
\Pi_S = V - \left(\frac{C(I) + C(\lambda I)}{2}\right) - I
$$

19/30 decreases with the specificity of the investme[nt.](#page-17-0)

Investment stage

The seller maximizes its profit with respect to *I*

$$
M_{I}^{ax}V-(\frac{C(I)+C(\lambda I)}{2})-I
$$

The FOC is:

$$
-C'(I)-\lambda C'(\lambda I)=2
$$

The FOC of an integrated firm is:

$$
-C'(I)=1
$$

 \equiv QQQ **20/30**

21/30

K ロ ▶ K 個 ▶ K 重 ▶ K 重 ▶ 「重 」 約 Q @

Remember

- ▶ Investments in specific assets and incomplete contracts may generate hold-up, i.e expropriation of part of the rent of the investment by a partner, which triggers under-investment!
- \blacktriangleright The hold-up effect is stronger as the specificity of investment increases.
- \blacktriangleright Here specificity of investment by the producer is a source of buyer power!
- \blacktriangleright Vertical integration is a solution to hold-up.

4 ロ → 4 @ → 4 할 → 4 할 → _ 할 → 9 Q (~ 22/30)

Exercise 1: Bargaining power within a chain of monopolies

Assumptions:

- ▶ A manufacturer produces a good at a unit cost c.
- A retailer faces a demand $D(p) = 1 p$.
- \blacktriangleright The game:
	- 1. The manufacturer and the retailer bargain over a two-part tariff contract (w*,* F);
	- 2. The retailer sets a final price p to consumers.

Questions:

- 1. Given the contract (w, F) , determine the optimal price set by the retailer in stage 2. Determine the stage-2 equilibrium profits of firms $\pi_U(w) + F$ and $\pi_D(w) - F$.
- 2. Write down the Nash program and determine the optimal contract (w*,* F). Is it efficient?

Buying group

Assumptions:

- \triangleright U offers a good at a unit cost 0.
- \triangleright D_1 and D_2 are two downstream firms that compete à la Cournot.
- ▶ Demand is $P = 1 q_1 q_2$.
- \blacktriangleright The game is a follows:
	- 1. U and each D_i bargain over a linear tariff contract w_i .
	- 2. Wholesale prices are observed and each D_i chooses its quantity q_i .
- ▶ The Nash bargaining takes place simultaneously and secretly. We consider an asymmetric Nash bargaining framework with a parameter $(\alpha, 1 - \alpha)$.

Profitability of a buying group?

23/30
23/30 A buying group consists in bargaining together and then compete on the downstream market.

Without buying group

- If the two firms have accepted their contract. Firm *i* chooses q_i to maximize $\mathop{{max}_{q_i}}(1 - q_i - q_j - w_i)q_i.$
	- \blacktriangleright Best reaction functions for $i = 1, 2$ are:

$$
q_i(q_j) = \frac{1-q_j-w_i}{2}
$$

▶ We obtain the Cournot equilibrium quantities $q_i^C(w_i, w_j) = \frac{1 + w_j - 2w_i}{3}$ for $i = 1, 2$.

$$
\text{Profits are: } \pi_i^C = \frac{(1 + w_j - 2w_i)^2}{9} \text{ and } \pi_U^C = \sum_{i=1,2} w_i q_i^C(w_i, w_j)
$$

- If only one firm *i* has accepted the contract w_i , firm *i* chooses q_i to maximize $\max_{q_i} (1 - q_i - w_i) q_i$ with respect to q_i .
	- ▶ The monopoly quantity is $q_i^M(w_i) = \frac{1 w_i}{2}$;
	- ▶ Profits are $\pi_i^M = \frac{(1-w_i)^2}{4}$ and $\pi_U^M = w_i q_{i_{w_i} \square_{w_i} \cup \dots \cup_{w_{i-1} \square_{w_{i-1}} \cup \dots \cup_{w_{i-1} \square_{w_{i-1}}} \cup \dots \cup_{w_{i-2} \square_{w_{i}}} \cup \dots \cup_{w_{i-2} \square$ $\frac{w_i - w_j}{4}$ and $\pi_U^M = w_i q_i^M(w_i)$ $\pi_U^M = w_i q_i^M(w_i)$ $\pi_U^M = w_i q_i^M(w_i)$ $\pi_U^M = w_i q_i^M(w_i)$

Bargaining stage

The asymmetric Nash product is:

$$
\underset{w_i}{max} \pi_i^C(w_i, w_j)^{(1-\alpha)} (\pi_U^C(w_i, w_j) - \pi_U^M(w_j))^{\alpha}
$$

Simplifying with ln,

$$
\max_{w_i}(1-\alpha)\ln(\pi_i^C(w_i,w_j))+\alpha\ln(\pi_U^C(w_i,w_j)-\pi_U^M(w_j))
$$

Deriving with respect to w_i , we obtain:

$$
(1 - \alpha) \frac{\frac{\partial \pi_i^C(w_i, w_j)}{\partial w_i}}{\pi_i^C(w_i, w_j)} + \alpha \frac{\frac{\partial \pi_U^C(w_i, w_j)}{\partial w_i}}{\pi_U^C(w_i, w_j) - \pi_U^M(w_j)} = 0 \qquad (1)
$$

In equilibrium wholesale unit prices are $w_i = w_j = \frac{\alpha}{2}$. Thus equilibrium profits are $\pi_i^{\mathcal{C}} = \frac{(8-7\alpha)^2}{36(4-3\alpha)}$ $\frac{(8-7\alpha)^2}{36(4-3\alpha)^2}$ and $\pi^C_U = \frac{\alpha(8-7\alpha)}{6(4-3\alpha)^2}$ $\frac{\alpha(8-7\alpha)}{6(4-3\alpha)^2}.$

With buying group

The bargaining succeeds either with both firms or none. The bargaining stage is thus rewritten as follows:

$$
\max_{w_i} \pi_i^C(w_i, w_j)^{(1-\alpha)} \pi_U^C(w_i, w_j)^{\alpha}
$$

We simplify with ln :

$$
\max_{w_i}(1-\alpha)\ln(\pi_i^C(w_i,w_j))+\alpha\ln(\pi_U^C(w_i,w_j))
$$

Deriving with respect to w_i , we obtain:

$$
(1 - \alpha) \frac{\frac{\partial \pi_i^C(w_i, w_j)}{\partial w_i}}{\pi_i^C(w_i, w_j)} + \alpha \frac{\frac{\partial \pi_i^C(w_i, w_j)}{\partial w_i}}{\pi_U^C(w_i, w_j)} = 0
$$
 (2)

26/30

Comparing (2) with (1) it is immediate that the equilibrium w decreases with the buying group. In equilibrium we find that wholesale unit prices are $w_i=w_j=\frac{\alpha}{2(4-3\alpha)}$. Thus equilibrium profits are $\pi_i^\mathcal{C}=\frac{(2-\alpha)^2}{36}$ and $\pi_U^{\text{C}} = \frac{\alpha(2-\alpha)}{6}$ $\frac{(-\alpha)}{6}$. 4 0 X 4 8 X 4 3 X 4 3 X 4 8 4 9 4 0 4

[Bargaining within a buyer-seller relationship](#page-16-0) [Bargaining with downstream competitors](#page-22-0)

27/30

KOXK@XKEXKEX E YORN

Legend: Blue - No Buying Group; Orange- Buying Group. Bold: Wholesale prices.

Forming a Buying group enhances retailer's buyer power.

They obtain lower input prices and capture a larger share of profit to the detriment of the manufacturer.

Exercise 2: Buyer size and buyer power

Assumptions:

- A manufacturer U produces a good at a unit cost $C(Q)$, with $C'(Q) > 0$ and $C''(Q) > 0$.
- \triangleright Two retailers D_1 and D_2 are active on separate markets and face an inverse demand $P(Q)$ with $P'(Q) < 0$.
- ▶ The two retailers must buy from the manufacturer to offer the product to consumers.
- ▶ We consider the following one-stage game: Each manufacturer-retailer pair bargain simultaneously and secretly over a quantity forcing contract (q*,* F);
- ▶ Use $P(Q) = 1 Q$ and $C(Q) = \frac{Q^2}{2}$ $\frac{\sqrt{2}}{2}$ for numerical application.
	- 1. Determine the optimal contracts (q_1, F_1) and (q_2, F_2) . Compute the equilibrium profit of each firm
	- 2. D_1 and D_2 merge and the new entity bargain with U over a new contract (q, F) . Determine the new equilibrium profits.
	- **4 ロ → 4 @ → 4 할 → 4 할 → 1 할 → 9 Q O + 28/30** 3. Compare the profits obtained in (1) and (2) and comment.

4 ロ → 4 @ → 4 ミ → 4 ミ → 三 → 9 Q O + 29/30

Remember

- \blacktriangleright The relative outside options/ status-quo are key to determine the sharing of profits within the channel.
	- \triangleright Restricting the shelf capacity may be a way for a retailer to enhance competition among manufacturers and obtain a larger share of a smaller pie.
	- ▶ Forming a buying group may be a way for retailers to obtain lower input prices from manufacturer (Caution: linear wholesale unit prices or convex production cost!)

30/30

K ロ X (個) X ミ X X ミ X ミ Y の Q (^

References

- ▶ Binmore, Rubinstein and Wolinsky (1986), "The Nash Bargaining Solution in Economic Modelling", RAND Journal of Economics, 17, 2, p. 176-188.
- ▶ Hart, O. (1995). "Firms, contracts, and financial structure" Oxford & New York: Oxford University Press, Clarendon Press.
- ▶ Nash (1950), "The Bargaining Problem", *Econometrica*, 18, 2;
- ▶ Rubinstein (1982), "Perfect equilibrium in a bargaining model", Econometrica, 50, 1.
- ▶ Stole and Zwiebel, 1996, "Intra-firm bargaining under non-binding contracts", Review of Economic Studies, 63, 375-410.