Exercize: Competition between two vertical chains

Let us consider two vertical chains denoted 1 and 2. Each vertical chain is made of two firms, U_i which produces an input, and D_i who sells it to final consumers, with i = 1, 2.

- Production cost at each level are normalized to 0.
- Only D_i can sell the product made by U_i .
- Final goods are horizontally differentiated. p₁ (reps. p₂ denotes the final price of the good sold by chain 1 (resp. chain 2).

$$egin{array}{ll} D_1 = 1 - p_1 + ap_2 \ D_2 = 1 - p_2 + ap_1 \end{array}$$

with $0 < a \leq 1$.

1. How to interpret a?

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● のへで

2. Vertical integration Assume first that U_i and D_i are merged to form

a firm I_i who sells good *i* at price p_i to consumers. I_1 and I_2 compete and set their prices simultaneously.

2.1. Consider that p_2 is given. Determine the profit of l_1 and the best reply $p'_1(p_2)$ maximizing the profit of l_1 with p_2 given.

The firm l_1 maximizes $\pi_{l1} = p_1(1-p_1+ap_2)$ which gives the best reply

$$p_1^r(p_2) = \frac{(1+ap_2)}{2}.$$

2.2. Determine the best reply of firm l_2 for a given p_1 , the Nash equilibrium prices p_1^{VI} et p_2^{VI} and profits of firms.

The best reply of firm l_2 is symmetric and we obtain the following Nash equilibrium:

$$p_1^{VI} = p_2^{VI} = \frac{1}{2-a}$$

and the corresponding profits $\frac{1}{(2-a)^2}$.

- 3. Vertical separation with two-part tariff. Assume now that each U_i et D_i are independent.
- In stage 1: each U_i simultaneously offers a TIOLI two-part tariff contract (w_i, F_i) to their D_i. Each D_i can accept or reject the offer. Contract are observable by all.
- ln stage 2, D_1 and D_2 set simultaneously their final prices p_1 et p_2 .
- 3.1. Stage 2, determine the profit of each D_i for a given (w_i, F_i) . Compute the best reply of each firm D_i at a given p_j , $p_i^r(p_j)$. What is the effect of an increase in w_i on both best replies ? Comment.

The firm D_i maximizes $\pi_i = (p_i - w_i)(1 - p_i + ap_j) - F_i$ which gives the best reply

$$p_i^r(p_j)=rac{\left(1+w_i+ap_j
ight)}{2}$$

whenever the profit is positive. An increase in w_1 raises $p_1^r(p_2)$ but has no direct effect on $p_2^r(p_1)$.

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q · 3/5

3.2. Determine the Nash equilibrium in prices as a function of w_1 and w_2 . What is the effect of an increase in w_1 on equilibrium prices?

The intersection of the best replies gives the following Nash equilibrium in prices:

$$p_i^S = \frac{2 + a + 2w_i + aw_j}{4 - a^2}$$

An increase in w_1 raises both equilibrium prices. It moves the best reply $p_1^r(p_2)$ upward and does not affect $p_2^r(p_1)$ but the intersection is moved upward and both equilibrium prices are increased.

3.3. Stage 1: Write the profit of U_i who anticipates final prices p_1^S et p_2^S . Determine F_i such that D_i accepts the contract.

 U_i maximizes

$$w_i(1-p_i^S(w_i,w_j)+ap_j^S(w_j,w_i))+F_i$$

subject to $(p_i^S - w_i)(1 - p_i^S + ap_j^S) - F_i \ge 0.$

- 3.4. Derive the profit of U_i as a function of w_i and sign it in $w_i = 0$. Does U_i sets $w_i > 0$? Explain. $\pi_{U_i} = p_i^S(w_i, w_j)(1 - p_i^S(w_i, w_j) + ap_j^S(w_j, w_i))$. The derivative of π_{U_i} in $w_i = 0$ is $\frac{a^2(2+a+aw_2)}{(4-a^2)^2} \ge 0$
- 3.5. Assume that, before the beginning of the game, firm U_i can choose whether or not to vertically integrate with D_i . What is its decision?

Because firm U_i gets back the whole profit of the vertical chain through F_i , it is better off in vertical separation as it can raise w_i above 0 to raise both final prices (it relaxes downstream competition).

(ロ)、(回)、(E)、(E)、(E) のQ()