ECO 650: Firms' Strategies and Markets Course 1: Multiproduct firms' pricing strategies

Claire Chambolle

1/17

K ロ X (個) K ミ X K ミ X ミ の Q Q

Exercise 1

- ▶ Two stores H (Hypermarket) and S (Supermarket)
- \blacktriangleright H sells A and B S sells A
- \triangleright *α* ∈ $[0, \frac{1}{2}]$ consumers are located at H and 1α in S.
- \blacktriangleright Transportation cost among the stores is normalized to 1.
- \blacktriangleright $u_A = 1$; u_B uniformly distributed over [0, 1] around each store.
- \blacktriangleright $b \in [0, 1]$ is the unit cost for B. No cost for A.

- 1. Which consumers may travel from one store to the other?
- 2. We note $p^H = p_A^H + p_B^H$ the sum of prices for the two goods at store H; p^S the price of A at store S. Determine the demand at each store.
- 3. Determine the two candidates Nash equilibria in pure strategy.
- 4. Assume $b \to 0$ and $\alpha = \frac{1}{9}$; show that the loss-leading equilibrium is the unique Nash equilibrium in pure strategy.
- 5. How do you explain the emergence of this loss-leading equilibrium?

3/17

KOKK@KKEKKEK E 1990

We note $p^H = p_A^H + p_B^H$ the sum of prices for the two goods at store H; p^S the price of A at store S .

1. Which consumers may travel from one store to the other?

No consumer in H will travel to S as $u_A = 1$.

In contrast, consumers located in S may choose to travel to H to buy the two goods A and B instead of A alone in S , i.e. when:

$$
1 + u_B - p^H - 1 > 1 - p^S \Rightarrow u_B > 1 + p^H - p^S
$$

4/17

メロメメタトメミドメミド (毛) りんぴ

2 Determine the demand at each store.

► If
$$
p^H > p^S
$$
, no consumer travels:
\n► $D_A^H = \alpha$
\n► $D_B^H = \alpha(1 - p_B^H)$
\n► $D^S = 1 - \alpha$.

If $p^H < p^S$, some consumers travel from S to H to buy the two goods :

►
$$
D_A^H = \alpha + (1 - \alpha)(p^S - p^H)
$$

\n► $D_B^H = \alpha(1 - p_B^H) + (1 - \alpha)(p^S - p^H)$.
\n► $D^S = (1 - \alpha)(1 + p^H - p^S)$.

5/17

- 3 Determine the two candidates Nash equilibria in pure strategy.
- If $p^H > p^S$, the profit of H and S can be respectively written as:

$$
\Pi^H = p_A^H \alpha + \alpha (1 - p_B^H)(p_B^H - b), \ \Pi^S = (1 - \alpha)p^S
$$

Maximizing Π^H with respect to p_A^H and p_B^H , and Π^S with respect to $p_{\scriptscriptstyle\beta}^{\scriptscriptstyle S}$, we have Π^H strictly increases in $p_{\!A}^H$ and Π^S strictly increases in $\rho^{\mathcal{S}}.$

We obtain a local monopoly equilibrium candidate:

$$
\hat{p}_A^H=1, \hat{p}_B^H=\frac{1+b}{2}, \hat{p}^S=1
$$

K ロ K d K K 로 K K 로 K 로 및 X 이익(* 6/17

3 Determine the two candidates Nash equilibria in pure strategy.

 \blacktriangleright **If** $p^H < p^S$, the profit of H and S can be written as:

$$
\Pi^H = (p^H - b)[\alpha + (1 - \alpha)(p^S - p^H)] - \alpha p_B^H (p_B^H - b)
$$

$$
\Pi^S = (1-\alpha)p^S(1+p^H-p^S)
$$

Maximizing Π^H with respect to p^H and p^H_B , and Π^S with respect to p^S , we obtain the following best reactions: we obtain $p^H_B = \frac{b}{2} < b$ and $p^{H}(p^{S}) = \frac{\alpha + (1-\alpha)p^{S}}{2(1-\alpha)}$ $\frac{p+ (1-\alpha)p^S}{2(1-\alpha)}.$ $\rho^S(p^H)=\frac{1+p^H}{2}$ $\frac{-p}{2}$.

We obtain the following loss-leading equilibrium candidate :

$$
p^{H*} = \frac{1+\alpha}{3(1-\alpha)} + \frac{2b}{3}, p_B^{H*} = \frac{b}{2}, p^{S*} = \frac{2-\alpha}{3(1-\alpha)} + \frac{b}{3}
$$

4 Assume $b \to 0$ and $\alpha = \frac{1}{9}$; show that the loss-leading equilibrium is the unique Nash equilibrium in pure strategy.

8/17

[Exercises](#page-1-0) [Exercise 1](#page-1-0) [Exercice 2](#page-11-0)

4 Assume $b \to 0$ and $\alpha = \frac{1}{9}$; show that the loss-leading equilibrium is the unique Nash equilibrium in pure strategy.

The equilibrium profit in the loss-leading case is:

$$
\Pi^{H*} = \frac{(1+\alpha-b(1-\alpha))^2}{9(1-\alpha)} + \frac{b^2\alpha}{4}, \Pi^{S*} = \frac{(2-\alpha)^2}{9(1-\alpha)} + \frac{b^2(1-\alpha)}{9}
$$

In the local monopoly case:

$$
\hat{\Pi}^{H} = \alpha + \frac{(1-b)\alpha}{4}, \hat{\Pi}^{S} = 1 - \alpha
$$

Assume $b \to 0$, when $\alpha = \frac{1}{9}$:

▶ In the loss-leading candidate, *H* obtains $\Pi^{H*} = \frac{1}{2} \cdot (\frac{5}{9})^2$ and *S* gets $\Pi^{S*} = \frac{(17)^2}{(9)^2}$ $\frac{(17)}{(9)^2.8} \approx 0.44.$

In the local monopoly candidate, *H* obtains $\hat{\Pi}^H = \frac{5}{9} \cdot \frac{1}{4}$ and *S* gets $\hat{\Pi}^{\mathcal{S}}=\frac{8}{9}.$

Which one is the equilibrium?

9/17

KOKK@KKEKKEK E DAG

- 4 Show that the loss-leading equilibrium is the unique Nash equilibrium in pure strategy.
- \triangleright Only H could deviate unilaterally from the loss leading strategy by raising its price to the local monopoly level. No deviation here $\text{because } \Pi^{H*} > \hat{\Pi}^{H}.$
- \triangleright S cannot unilaterally deviate by raising her price as it would remain in the competition situation.

Conversely when $\alpha = \frac{1}{3}$, the deviation becomes profitable.

10/17

KO KKO KARA KE KARA NE YO QOY

5. How do you explain the emergence of this loss-leading equilibrium? The logic under the result here is complementarity.

- ▶ A complementarity between the two independent products arises through the transportation cost.
- \blacktriangleright H has an incentive to sell B below cost because this is the product which has an elastic demand, and therefore lowering this price below cost can attract consumers from S.
- **If instead** $\alpha = \frac{1}{3}$ there is a local monopoly equilibrium. H has no incentive to compete to attract consumers from S.

11/17

KOXK@XKEXKEX E YOQO

Exercice 2

Food for life makes health food for active, outdoor people. They sell 3 basics products (Whey powder, high protein Strenght bar, a meal additive(Sawdust))

Consumers fall into two types:

Question: Each product costs 3 to produce and the bundle of 3 products costs 9. What is the best pricing strategy for the firm? Separate selling, Pure bundling (only bundles of 3 products must be considered)? or mixed bundling?

The firm cannot discriminate among consumers. We assume there is 1 consumer of each type (A and B) and he wants one unit of each product.

12/17

KOXK@XKEXKEX E DAG

Exercice 2

Separate selling: for each product, the firm must choose either to sell the product at high price only to one type of consumers or at a lower price to the two types.

13/17

K ロ X K 個 X K ミ X K ミ X コ X Q Q Q Q

Exercice 2

Separate selling: for each product, the firm must choose either to sell the product at high price only to one type of consumers or at a lower price to the two types.

► Whey: $(10-3) > 2(3-3)$ → $p^W = 10$ and $\pi^W = 7$.

- **Strenght**: $(16-3) < 2(10-3) \rightarrow p^{St} = 10$ and $\pi^{St} = 14$.
- **Sawdust**: $(13-3) > 2(2-3) \rightarrow p^{Sa} = 13$ and $\pi^{Saw} = 10$.
- \triangleright Total profit with separate selling strategy is $7 + 14 + 10 = 31$.

14/17
14/17
14/17

Pure bundling:

Highest price for type A: 28! Highest price for type B: 26!

 $2(26 - 9) > (28 - 9)$

The best price for the bundle is 26 and the profit with a pure bundling strategy is: 34 *>* 31

15/17
15/17
15/17
15/17

Mixed bundling: Highest price for the bundle is 28! Mixed bundling may enable to raise the price of the bundle without loosing entirely type B consumers. The firm sets $p = 28$ and as type A consumers have no surplus, separate prices for each good must be such that:

$$
p^W \ge 10, p^{St} \ge 16, p^{Sa} \ge 2.
$$

Under this constraint, the best prices the firm can offer are:

$$
p^{W} = 10, p^{St} = 16, p^{Sa} = 13.
$$

Type A buys the bundle and Type B only buy Sawdust. Total profit with mixed bundling is

$$
(28-9)+(13-3)=29<34!
$$

16/17

KOXK@XXEXXEX E DAG

Authorizing bundles of two products, we compare all combinations of bundles of two goods and separate pricing and the best strategy is :

- ▶ Offer a bundle of Sawdust and Strenght at 23, while offering a price for separate sales $\rho^{\mathcal{W}}=10$, $\rho^{\mathcal{S}t}=16$ and $\rho^{\mathcal{S}a}=13$.
- \blacktriangleright Type B buys the bundle only whereas Type A buys Whey and Strenght separately.
- \triangleright The firms makes: $(23-6)+(10-3)+(16-3)=37!$

17/17
17/17
17/17
17/17