ECO 650: Firms' Strategies and Markets Course 1: Multiproduct firms' pricing strategies

Claire Chambolle

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● のへで

Exercise 1

- Two stores H (Hypermarket) and S (Supermarket)
- H sells A and B S sells A
- $\alpha \in [0, \frac{1}{2}]$ consumers are located at H and 1α in S.
- Transportation cost among the stores is normalized to 1.
- $u_A = 1$; u_B uniformly distributed over [0, 1] around each store.
- ▶ $b \in [0, 1]$ is the unit cost for B. No cost for A.

- 1. Which consumers may travel from one store to the other?
- 2. We note $p^H = p_A^H + p_B^H$ the sum of prices for the two goods at store H; p^S the price of A at store S. Determine the demand at each store.
- 3. Determine the two candidates Nash equilibria in pure strategy.
- 4. Assume $b \rightarrow 0$ and $\alpha = \frac{1}{9}$; show that the loss-leading equilibrium is the unique Nash equilibrium in pure strategy.
- 5. How do you explain the emergence of this loss-leading equilibrium?

We note $p^H = p_A^H + p_B^H$ the sum of prices for the two goods at store *H*; p^S the price of A at store *S*.

1. Which consumers may travel from one store to the other?

No consumer in *H* will travel to *S* as $u_A = 1$.

In contrast, consumers located in S may choose to travel to H to buy the two goods A and B instead of A alone in S, i.e. when:

$$1+u_B-p^H-1>1-p^S \Rightarrow u_B>1+p^H-p^S$$

(ロ)

2 Determine the demand at each store.

► If
$$p^H > p^S$$
, no consumer travels:
► $D^H_A = \alpha$
► $D^H_B = \alpha(1 - p^H_B)$
► $D^S = 1 - \alpha$.

If p^H < p^S, some consumers travel from S to H to buy the two goods :

▶
$$D_A^H = \alpha + (1 - \alpha)(p^S - p^H)$$

▶ $D_B^H = \alpha(1 - p_B^H) + (1 - \alpha)(p^S - p^H).$
▶ $D^S = (1 - \alpha)(1 + p^H - p^S).$

- 3 Determine the two candidates Nash equilibria in pure strategy.
- If $p^H > p^S$, the profit of H and S can be respectively written as:

$$\Pi^{H} = p_{A}^{H}\alpha + \alpha(1 - p_{B}^{H})(p_{B}^{H} - b), \ \Pi^{S} = (1 - \alpha)p^{S}$$

Maximizing Π^H with respect to p_A^H and p_B^H , and Π^S with respect to p^S , we have Π^H strictly increases in p_A^H and Π^S strictly increases in p^S .

We obtain a local monopoly equilibrium candidate:

$$\hat{p}_{A}^{H} = 1, \hat{p}_{B}^{H} = \frac{1+b}{2}, \hat{p}^{S} = 1$$

3 Determine the two candidates Nash equilibria in pure strategy.

• If $p^H < p^S$, the profit of H and S can be written as:

$$\Pi^{H} = (p^{H} - b)[\alpha + (1 - \alpha)(p^{S} - p^{H})] - \alpha p_{B}^{H}(p_{B}^{H} - b)$$

$$\Pi^{S} = (1 - \alpha)p^{S}(1 + p^{H} - p^{S})$$

Maximizing Π^H with respect to p^H and p_B^H , and Π^S with respect to p^S , we obtain the following best reactions: we obtain $p_B^H = \frac{b}{2} < b$ and $p^H(p^S) = \frac{\alpha + (1-\alpha)p^S}{2(1-\alpha)}$. $p^S(p^H) = \frac{1+p^H}{2}$.

We obtain the following loss-leading equilibrium candidate :

$$p^{H*} = \frac{1+\alpha}{3(1-\alpha)} + \frac{2b}{3}, p_B^{H*} = \frac{b}{2}, p^{S*} = \frac{2-\alpha}{3(1-\alpha)} + \frac{b}{3}$$

4 Assume $b \rightarrow 0$ and $\alpha = \frac{1}{9}$; show that the loss-leading equilibrium is the unique Nash equilibrium in pure strategy.

Exercises Exercise 1 Exercice 2

4 Assume $b \rightarrow 0$ and $\alpha = \frac{1}{9}$; show that the loss-leading equilibrium is the unique Nash equilibrium in pure strategy.

The equilibrium profit in the loss-leading case is:

$$\Pi^{H*} = \frac{(1+\alpha-b(1-\alpha))^2}{9(1-\alpha)} + \frac{b^2\alpha}{4}, \Pi^{S*} = \frac{(2-\alpha)^2}{9(1-\alpha)} + \frac{b^2(1-\alpha)}{9}$$

In the local monopoly case:

$$\hat{\Pi}^{H} = \alpha + \frac{(1-b)\alpha}{4}, \hat{\Pi}^{S} = 1 - \alpha$$

Assume $b \rightarrow 0$, when $\alpha = \frac{1}{9}$:

▶ In the loss-leading candidate, *H* obtains $\Pi^{H*} = \frac{1}{2} \cdot (\frac{5}{9})^2$ and *S* gets $\Pi^{S*} = \frac{(17)^2}{(9)^{2.8}} \approx 0.44.$

▶ In the local monopoly candidate, *H* obtains $\hat{\Pi}^H = \frac{5}{9} \cdot \frac{1}{4}$ and *S* gets $\hat{\Pi}^S = \frac{8}{9}$.

Which one is the equilibrium?

◆□ → < @ → < 差 → < 差 → 差 の < @ </p>

- 4 Show that the loss-leading equilibrium is the unique Nash equilibrium in pure strategy.
- Only *H* could deviate unilaterally from the loss leading strategy by raising its price to the local monopoly level. No deviation here because Π^H* > Î^H.
- S cannot unilaterally deviate by raising her price as it would remain in the competition situation.

Conversely when $\alpha = \frac{1}{3}$, the deviation becomes profitable.

◆□▶◆□▶◆臣▶◆臣▶ 臣 のへぐ

5. How do you explain the emergence of this loss-leading equilibrium? The logic under the result here is complementarity.

- A complementarity between the two independent products arises through the transportation cost.
- ► *H* has an incentive to sell *B* below cost because this is the product which has an elastic demand, and therefore lowering this price below cost can attract consumers from *S*.
- If instead $\alpha = \frac{1}{3}$ there is a local monopoly equilibrium. *H* has no incentive to compete to attract consumers from *S*.

(ロ)

Exercice 2

Food for life makes health food for active, outdoor people. They sell 3 basics products (Whey powder, high protein Strenght bar, a meal additive(Sawdust))

Consumers fall into two types:

Consumers	Whey	Strenght	Sawdust
Type A	10	16	2
Type B	3	10	13

Question: Each product costs 3 to produce and the bundle of 3 products costs 9. What is the best pricing strategy for the firm? Separate selling, Pure bundling (only bundles of 3 products must be considered)? or mixed bundling?

The firm cannot discriminate among consumers. We assume there is 1 consumer of each type (A and B) and he wants one unit of each product.

Exercice 2

Separate selling: for each product, the firm must choose either to sell the product at high price only to one type of consumers or at a lower price to the two types.

(ロ)

Exercice 2

Separate selling: for each product, the firm must choose either to sell the product at high price only to one type of consumers or at a lower price to the two types.

Consumers	Whey	Strenght	Sawdust
Type A	10	16	2
Type B	3	10	13

• Whey: $(10-3)>2(3-3) \rightarrow p^W = 10$ and $\pi^W = 7$.

- Strenght: $(16-3) < 2(10-3) \rightarrow p^{St} = 10$ and $\pi^{St} = 14$.
- ▶ Sawdust: (13-3)>2(2-3) → $p^{Sa} = 13$ and $\pi^{Saw} = 10$.
- Total profit with separate selling strategy is 7 + 14 + 10 = 31.

Eugeniese	Exercise 1
Exercises	Exercice 2

Consumers	Whey	Strenght	Sawdust
Туре А	10	16	2
Type B	3	10	13

Pure bundling:

Highest price for type A: 28! Highest price for type B: 26!

2(26-9) > (28-9)

The best price for the bundle is 26 and the profit with a pure bundling strategy is: 34 > 31

	Exercises	Exercice 2	
Consumers	Whey	Strenght	Sawdust
Type A	10	16	2
Type B	3	10	13

Mixed bundling: Highest price for the bundle is 28! Mixed bundling may enable to raise the price of the bundle without loosing entirely type B consumers. The firm sets p = 28 and as type A consumers have no surplus, separate prices for each good must be such that:

$$p^W \ge 10, p^{St} \ge 16, p^{Sa} \ge 2.$$

Under this constraint, the best prices the firm can offer are:

$$p^W = 10, p^{St} = 16, p^{Sa} = 13.$$

Type A buys the bundle and Type B only buy Sawdust. Total profit with mixed bundling is

$$(28 - 9) + (13 - 3) = 29 < 34!$$

Evensions	Exercise 1
Exercises	Exercice 2

Consumers	Whey	Strenght	Sawdust
Type A	10	16	2
Type B	3	10	13

Authorizing bundles of two products, we compare all combinations of bundles of two goods and separate pricing and the best strategy is :

- Offer a bundle of Sawdust and Strenght at 23, while offering a price for separate sales p^W = 10, pSt = 16 and p^{Sa} = 13.
- Type B buys the bundle only whereas Type A buys Whey and Strenght separately.
- ► The firms makes: (23-6)+(10-3)+(16-3)=37!