Firms' Strategies and Markets Entry

Claire Chambolle

October 16, 2024

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

Introduction

Entrant's strategy: "Judo economics"

Incumbent's strategies vis-à-vis entry

- Entry deterred
- Entry Accomodated

◆□ → < 団 → < 三 → < 三 → < 回 → < < 回 → < </p>

Entrant's strategy: Judo Economics

In the art of "judo", a combatant uses the weight and strenght of his opponent to his own advantage.

- Value-based judo strategy
- Rule-based judo strategy
- 1. Softsoap on the liquid soap market
- 2. Red Bull on the energy drinks market

Ruled-based judo strategy

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ のへで

Softsoap Case

Insight: Softsoap had a novel product. Major incumbents could have imitated quickly and use their brand name to dominate the market but they were hesitant (risk of cannibalisation + risk of tarnishing their image).

Red Bull Case

Founded in Austria by Dietrich Mateschitz. Red Bull began with sales to discos where alcohol was prohibited.

Sold for a decade before entering the US. market. Carbonated soft drinks largest beverage market in the US (>\$50 billion). US energy drinks market were not interesting yet for large players (\$75 million)

Rumors of being made of bulls' testicules. 3 swedes died (because of mix with alcool). Red Bull now looks dangerous. Red Bull had grown its sales 118% over the past year (about 2/3 of the energy drink market), while overall soft drinks grew by only 0.6% (total US energy drink market size: \$275 million).

Coke launches its energy drink KMX with a marketing strategy based on secrecy and mystery.

Insight: Soft drinks don't really see it as a new product at first because it is just cafeine. Then Red Bull deliberatly aligned with dangerous sporting events. Soft drinks launch their energy drinks on a different brand name to escape this image.

Judo Economics: Gelman and Salop (1983)

- Consumers have an inelastic demand of size D if $p \le p_{max}$.
- An incumbent *I* has an installed capacity *D* and no production cost.
- An entrant *E* has a variable cost $c_E > 0$

The timing of the game is as follows:

- 1. E decides to enter or not the market. If he enters, he sets a capacity K_E and its price p_E .
- 2. The incumbent observes (K_E, p_E) and adapts its price denoted p_I .

◆□▶◆□▶◆臣▶◆臣▶ 臣 のへで

If E does not enter the market

- E gets 0 and *I* is a monopolist.
- A monopolist *I* sets a price p_{max} and its profit is $p_{max}D$.

If *E* chooses to enter the market,

• If $p_I > p_E$ the firm $E D_E = K_E$ and $D_I = D - K_E$. Firm I can sell at p_{max} and obtain a profit

$$p_{max}(D-K_E)$$

- ▶ If $p_I \le p_E$, the firm I has a demand $D_I = D$ and $D_E = 0$. The firm can also sell at $p_E \epsilon$ and obtain $p_E D$.
- ▶ I chooses the price that maximizes its profit i.e.: p_{max} if $p_E \leq \frac{p_{max}(D-K_E)}{D}$ and p_E otherwise.

◆□ → ◆昼 → ◆臣 → ◆臣 → ● ◆ ◆ ◆ ◆

- Given the reaction of firm *I*, we determine the optimal decisions (*K_E*, *p_E*) of the entrant.
- ▶ The firm *E* can sell if and only if I chooses p_{max} . Therefore, *E* must set $p_E = \frac{(D K_E)p_{max}}{D}$, that is a sufficiently low price and maximises

$$K_E(rac{D-K_E}{D}p_{max}-c_E)$$

which gives $K_E^* = \frac{D}{2}(1 - \frac{c_E}{p_{max}})$ and $p_E^* = \frac{p_{max} + c_E}{2}$.

▶ If $c_E = 0$, i.e; the entrant is as efficient as the incumbent, $K_E^* = \frac{D}{2}$, the two firms share the market and the price is $\frac{p_{max}}{2}$.

(ロ)

In equilibrium, profits are:

$$egin{aligned} \Pi_I &= p_{max}(D-\mathcal{K}_E^*) = rac{D(p_{max}+c_E)}{2} \ \Pi_E &= rac{D}{p_{max}}rac{(p_{max}-c_E)^2}{4} \end{aligned}$$

Judo economics

A less efficient entrant can enter the market and realize a positive profit when facing an incumbent more efficient and with more capacity. The entrant chooses a relatively low capacity to make it very costly for the incumbent to go into a price war.

- ► The case of UK supermarket chains on the gazoline retail C
- ▶ With personalized prices, I would sell at $p_E \epsilon$ at population K_E but at P_{max} to other consumers and entry would be always deterred.

*ロ * * 御 * * ミ * ミ * ミ * の < や

(ロ)

Strategic Incumbent and entry

An incumbent can be strategic in many ways when confronted to a competitor's entry threat

- Excess capacity
- Limit price
- Reputation of being a tough competitor
- Increase of competitors' costs
- Creation of switching costs
- Tying practices

> ...

- Long term contracts with customers
- These strategies can either be used to deter entry or to accommodate!

(ロ) (同) (三) (三) (三) (○) (○)

11/42

Strategic Incumbent and entry

- 1. A taxonomy of incumbent's investments strategies
 - "Top-dog strategy": investment in capacity
 - "Lean and hungry look strategy": an innovation model
- 2. The chain store paradox : a reputation game
- 3. Exclusive dealing: a contracting strategy

A taxonomy of incumbent's investments strategies

- In stage 1, the incumbent chooses the level of some irreversible investment K₁.
- In stage 2, after observing K₁, E decides to enter or not. Product market decisions are taken, denoted σ₁ and σ₂ (price, quantity, investment,...).
 - If E enters, σ₁ and σ₂ are chosen simultaneously, and profits are denoted π₁(K₁, σ₁, σ₂) and π₂(K₁, σ₁, σ₂). We assume that π₂(K₁, σ₁, σ₂) includes entry cost if any.

We assume that there exists a unique Nash equilibrium of this competition stage $(\sigma_1^*(K_1), \sigma_2^*(K_1))$ solution of the system of FOCs:

$$\frac{\partial \pi_1(K_1, \sigma_1, \sigma_2)}{\partial \sigma_1} = 0$$
$$\frac{\partial \pi_2(K_1, \sigma_1, \sigma_2)}{\partial \sigma_2} = 0$$

► If E does not enter, the incumbent sets $\sigma_1^m(K_1)$ and obtains $\pi_1^m(K_1, \sigma_1^m(K_1))$.

Entry deterrence

 \blacktriangleright K_1 is set at a level sufficient to deter entry i.e. such that:

$$\pi_2(K_1, \sigma_1^*(K_1), \sigma_2^*(K_1)) = 0$$

To see how K₁ must be distorted, we totally differentiate π₂ with respect to K₁:

- ▶ Sign of direct effects: informative $\left(\frac{\partial \pi_2}{\partial K_1} > 0\right)$ or persuasive $\left(\frac{\partial \pi_2}{\partial K_1} < 0\right)$ advertising, investment in capacity $\left(\frac{\partial \pi_2}{\partial K_1} = 0\right)$
- Strategic effect : given K₁ it is a commitment for the incumbent to be tough or weak in its decision of σ₁(K₁)
- ► If $\frac{d\pi_2}{dK_1} < 0$, investment makes the incumbent tough: "top dog"; If $\frac{d\pi_2}{dK_1} > 0$, investment makes the incumbent soft: "lean and hungry look".

Entry accomodation

▶ K₁ is set at its best accommodating level, i.e. :

$$\max_{K_1} \pi_1(K_1, \sigma_1^*(K_1), \sigma_2^*(K_1))$$

To see how K₁ must be distorted, we totally differentiate π₁ with respect to K₁:

- The direct effect is the "profit maximizing effect" with no effect on firm 2.
- Strategic effects are related:

$$\underbrace{Sign(\frac{\partial \pi_1}{\partial \sigma_2} \frac{\partial \sigma_2^*(K_1)}{\partial K_1})}_{Sign(\frac{\partial \pi_1}{\partial \sigma_2} \frac{\partial \sigma_2^*(K_1)}{\partial K_1})}$$

Strategic Effect Accomodation

 $= Sign(\frac{\partial \pi_2}{\partial \sigma_1}\frac{\partial \sigma_1^*(K_1)}{\partial K_1}) \times Sign(\frac{d\sigma_2^*}{d\sigma_1})$

- Top Dog: Overinvestment;
- Lean & Hungry: Underinvestment;
- Puppy Dog: Overinvestment for (D) and Underinvestment for (A);
- ► Fat Cat: Underinvestment for (D) and Overinvestment for (A).

Example

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ → ○ < ○

16/42

A top dog example: Investment in capacity

- ln stage 1, an incumbent firm 1 sets its capacity \bar{q}_1 .
- ▶ In stage 2, the entrant 2 decides to enter or not. In case of entry the two firms set additional capacity $\Delta \bar{q}_1$ and $\Delta \bar{q}_2$ respectively and produce at most $\bar{q}_1 + \Delta \bar{q}_1$ for the incumbent and $\Delta \bar{q}_2$ for the entrant.
- Products are homogeneous and the inverse demand function is $P = 1 q_1 q_2$.
- Entry cost : e
- k is the marginal cost of capacity.
- c the marginal cost of production.

Assume that 2 has entered. The incumbent's profit is:

$$\pi_1=(1-q_1-q_2-c)q_1-k\Deltaar{q_1}$$

Maximizing its profit with respect to q_1 , the incumbent's best reaction function is:

The entrant's profit is:

$$\pi_2=(1-q_1-q_2-c)q_2-k\Deltaar{q_2}-e$$

Maximizing this function w.r.t. q_2 , the best reaction function is:

$$q_2(q_1) = egin{cases} rac{1}{2}(1-q_1-c-k) & ext{ for } q_1 < ilde q_1, \ 0 & ext{ for } q_1 \geq ilde q_1 \end{cases}$$

$$ilde{q_1} = 1 - c - k - 2\sqrt{e} \Leftrightarrow \pi_2(q_2(q_1), q_1) = rac{1}{4}(1 - q_1 - c - k)^2 - e = 0$$

4 cases to consider

1. Inevitable entry: $\tilde{q}_1 > q_1^V \Rightarrow e < e^- = \frac{1}{9}(1 - c - 2k)^2$. q_1^V corresponds to a Nash equilibrium between the entrant 2 and an unconstrained firm 1.

• if
$$\bar{q}_1 = q_1^V \Rightarrow \pi_1 = \frac{1}{9}(1-c+k)^2$$

• if $\bar{q}_1 = q_1^C \Rightarrow \pi_1^C = \frac{1}{9}(1-c-k)^2$.

4 cases to consider

2. Blockaded entry

$$q_1^M = \frac{1}{2}(1 - c - k) \text{ and } q_1^M > \tilde{q}_1 \Rightarrow e > e^+ = \frac{1}{16}(1 - c - k)^2$$

 \blacktriangleright Then $\bar{q}_1 = q_1^M \Rightarrow \pi_1^M = \frac{1}{4}(1 - c - k)^2$

4 cases to consider If $q_1^M < \tilde{q}_1 < q_1^V \Leftrightarrow e^- < e < e^+$

- 3. Deterred entry $\bar{q}_1 = \tilde{q}_1$ Commitment from 1 to be on its highest reaction function \Rightarrow credible that $q_1 = \tilde{q}_1$ and no entry.
- 4. Accomodated entry
 - $\bar{q}_1 = q_1^S = \frac{1}{2}(1 c k) = q_1^M < \tilde{q}_1$. In the competition stage, 1 is on the high reaction function only if $q_1 \le q_1^M < q_1^V$.

Entrant's strategy: Judo Economics Strategic Incumbent and entry

If $q_1^M < ilde q_1 < q_1^V \Leftrightarrow e^- < e < e^+$

The profit obtained in case of accomodation is:

$$\max_{q_1^s} \pi_1(q_1^s,q_2(q_1^s)) = rac{1}{2}(1-c-k-q_1^S)q_1^S \Rightarrow \pi_1^A = rac{1}{8}(1-c-k)^2$$

To deter entry, the incumbent must install a larger capacity q₁ and its profit is:

$$\pi_1^D = (1 - c - k - \tilde{q}_1)\tilde{q}_1 = 2\sqrt{e}(1 - c - k - 2\sqrt{e})$$

It is possible to show that $\pi_1^D > \pi_1^A$ if $e > e^* = \frac{(2-\sqrt{2})^2(1-c-k)^2}{64}$.

(ロ)

23/42

Remember

This investment capacity model illustrates the TOP DOG strategy for Deterrence:

- Deterrence $\rightarrow q_1 = \tilde{q}_1$ which corresponds to a capacity expansion above the monopoly level.
- Accomodation $\rightarrow q_1^S = q_1^M$ which corresponds to a capacity expansion above the competition level $(q_1^C = \frac{1-c-k}{3})$.

Lean and Hungry look: An innovation model

Assumptions

- Period 1: Firm 1 can make an investment K₁ to reduce its marginal cost c(K₁) and obtain the corresponding gross profit π^M(c(K₁)) which strictly increases in K₁ in period 1.
- Period 2 Firm 2 may enter at a fixed cost F. When firm 2 enters, 1 and 2 compete in R&D:
 - To innovate with probability ρ_i costs $\rho_i^2/2$.

Innovation is drastic and leads to a marginal cost c.

Table: Gains in period2

Innovation probabilities	ρ_2	$(1- ho_2)$
ρ_1	(0,0)	$(\pi^{M}(c), 0)$
$(1 - \rho_1)$	$(0, \pi^{M}(c))$	$(\pi^{M}(c(K_{1}), 0))$

Period 2: Firms 1 and 2 choose their R&D levels ρ_1 and ρ_2 to maximize their expected profit:

$$\begin{aligned} \pi_1 &= \rho_1(1-\rho_2)\pi^M(c) + (1-\rho_1)(1-\rho_2)\pi^M(c(K_1)) - \rho_1^2/2, \\ \pi_2 &= \rho_2(1-\rho_1)\pi^M(c) - \rho_2^2/2 \end{aligned}$$

FOCS are:

$$\begin{cases} (1 - \rho_2^*)(\pi^M(c) - \pi^M(c(K_1)) = \rho_1^*, \\ (1 - \rho_1^*)\pi^M(c) = \rho_2^* \end{cases}$$

The equilibrium investments ρ_1^* and ρ_2^* that solve the above system are such that $\frac{\partial \rho_1^*}{\partial K_1} < 0$ and $\frac{\partial \rho_2^*}{\partial K_1} > 0$. For **Deterrence**

$$\frac{d\pi_2(K_1,\rho_1^*,\rho_2^*)}{dK_1} = -\rho_2^*\pi^M(c)\frac{\partial\rho_1^*}{\partial K_1} > 0$$

The deterrence strategy consists in reducing K_1 .

◆□▶◆□▶◆□▶◆□▶ □ のへで

Accomodation

$$\begin{array}{ll} \frac{d\pi_{1}(K_{1},\rho_{1}^{*},\rho_{2}^{*})}{dK_{1}} & = & \frac{\pi_{1}(K_{1},\rho_{1}^{*},\rho_{2}^{*})}{\partial K_{1}} - (\rho_{1}^{*}\pi^{M}(c) + (1-\rho_{1}^{*})\pi^{M}(c(K_{1}))\frac{\partial\rho_{2}^{*}}{\partial K_{1}} \\ & < & \frac{\pi_{1}(K_{1},\rho_{1}^{*},\rho_{2}^{*})}{\partial K_{1}} \end{array}$$

where
$$\frac{\pi_1(\kappa_1, \rho_1^*, \rho_2^*)}{\partial \kappa_1} = (1 - \rho_1^*)(1 - \rho_2^*) \frac{\partial \pi^M(c(K_1))}{\partial K_1}$$

The accomodation strategy consists in reducing K_1 .

Lean and Hungry look

In period 1 firm 1 underinvests in K_1 to commit itself to being more aggressive in its R&D race in period 2. This is the best strategy both to deter entry or accomodate.

Why? R&D investments are strategic substitutes and the larger K_1 the higher $\pi^M(c(K_1))$ and therefore the lower the incumbent's incentive to invest in period 2 (Arrow replacement effect).

・ロト・周ト・ヨト・ヨト ヨーのくや

A taxonomy of incumbent's investments strategies The chain store paradox : A Reputation strategy Contracts to deter entry

The chain store paradox (Selten, 1978)

- An incumbent firm I which owns stores in N markets.
- Entry takes place sequentially
 - 1. E_1 enters or not in period 1 on a first market.
 - 2. Another E_2 enters or not on a second market in period 2.
 - 3. ...
 - 4. The last E_N enters or not on market N in period N.

- Without entry the gain of I in each store is: a
- ln case of entry, gains of firm I and E_i are:

Table: Payoffs in case of entry

Choice of I	Fight	Accomodate
Payoffs (I, E_i)	(-1,-1)	(0,b)

- We solve the game backward.
- In period N, if E_N enters, the best choice for player I is to accomodate. Long run consideration do not come in, since after period N the game is over.
- In period N − 1, a fight in period N − 1 would not deter player N to enter, therefore in N − 1 the best strategy for I is to accomodate.
- By induction theory, the unique sequential equilibrium is such that in each period t, E_t enters and I accomodates.
- Selten Paradox (1978): Incomplete information framework, i.e. I can be of type tough or weak with a probability => a reputation issue!!

<ロ><同><同><目><日><日><日><日><日><日><日><日><日><日><日><日><10</td>

The chain store game with reputation

- Same framework except that I can be tough (on all markets) with probability (p) and weak with proba (1-p)
- Each E_i can be tough with probability (q) and weak with proba (1-q)
- **•** Tough I always fights ; Tough *E_i* always enters.

Choice of a weak I	Fight	Accomodate
Payoffs (I, <i>E_i</i>)	(-1,-1)	(0,b)

We solve the game backward.

(ロ) (回) (三) (三) (三) (三) (○)

30/42

The case N = 1

It is a one period game \Rightarrow **No reputation effect**.

- A tough I fights.
- A weak I accomodates.
- p is the probability that the incumbent is tough.
- ▶ When the expected gain of a weak E_1 is -p + (1-p)b > 0, i.e. $p , <math>E_1$ enters. Otherwise, E_1 stays out.

• If
$$p < \underline{p} = \frac{b}{b+1}$$
, a weak I gains 0. If $p \ge \underline{p} = \frac{b}{b+1}$, I gains a.

The case N = 2

It is a two-period game \Rightarrow **A reputation effect may take place**.

A tough I fights.

What is the strategy for a weak I?

- If I accomodates in t = 1, then, in t = 2, E₂ knows that I is weak and always enters. The expected gain of a weak I is 0.
- ▶ If I fights in t = 1, and if then in $t = 2 E_2$ believes that I is tough and stays out, the expected gain of a weak I is $-1 + \delta(1 q)a$ (with the complementary probability q, E_2 is tough and enters).

If $-1 + \delta(1-q)a < 0$, there is **No reputation strategy** for a weak I.

In t = 1, a weak E_1 enters if p and stays out otherwise.

- If I is weak, he accomodates in t = 1, a weak or tough E_2 enters.
- If I is tough, he fights in t = 1, a weak E_2 stays out.

<ロ><同><同><目><日><日><日><日><日><日><日><日><日><日><日><10</td>

If $-1 + \delta(1-q)a > 0$, **A reputation strategy** for a weak I may arise.

A weak I wants to fight in t = 1 with a positive probability β to deter entry in t = 2. We focus directly on the interesting case in which E_2 is a

weak entrant.

- If $p > \underline{p}$,
 - If I accomodates in t = 1, a weak E₂ knows that I is weak and always enters. Accomodating in t = 1 brings 0 to I.
 - ▶ If I fights in t = 1, the revised probability that I is tough is $p(tough/fight) = \frac{p}{p+\beta(1-p)} > p > p$ and a weak E_2 stays out. Bayes
 - ▶ Because fighting in t = 1 always deters entry of a weak E_2 in t = 2, the expected gain of *I* is $\beta(-1 + \delta(1 - q)a) + (1 - \beta) \times 0$. A weak I always fights ($\beta = 1$) in t = 1 and earns the profit : $-1 + \delta(1 - q)a > 0$.
 - Anticipating this, in period 1, a weak E₁ always stays out.

If $-1 + \delta(1 - q)a > 0$, a weak I wants to fight in t = 1 with a positive probability β to deter entry in t = 2.

► If *p* < <u>*p*</u>,

- If *I* fights in *t* = 1, *E*₂ then revises its beliefs accordingly and now believes that I is tough with a probability: *p*(tough/fight) = ^p/_{p+β(1-p)} > p.
- ▶ In t = 2, still E_2 knows that a weak I accomodates and a tough I fights (last period) but he takes into account the revised probability that I is tough p(tough/fight). A weak E_2 prefers not entering if: $-\frac{p}{p+\beta(1-p)} + (1-\frac{p}{p+\beta(1-p)})b \le 0$, i.e. if $\beta \le \beta^* = \frac{p}{(1-p)b}$.
- Going backward to t = 1, E_1 knows that I plays this reputation effect to deter entry in t = 2 and therefore anticipates that I fights with a probability $p + (1 p)\beta^* = p\frac{(1+b)}{b}$.
- A weak E_1 prefers to stay out if $-p\frac{(1+b)}{b} + (1-p\frac{(1+b)}{b})b < 0$, i.e. if $p > (\frac{b}{1+b})^2$ and *I* gains *a*. Otherwise if $p < (\frac{b}{1+b})^2$, a weak E_1 enters and *I* thus gains $\beta^*(-1+\delta(1-q)a) > 0$. A lower β would reduce I's gains and a higher β cannot block entry of E_2 .

Conclusion

Because there are at least two-periods, E_1 anticipates that I has an incentive to create a reputation of being tough in t = 1 to deter entry in t = 2, and therefore E_1 is less likely to enter also in t = 1.

The generalization to any N is possible

Assuming that N = 3, we now find that E_1 enters if and only if $p < (\frac{b}{1+b})^3$ and so on for N = T for $p < (\frac{b}{1+b})^T$.

Contracts to deter entry

Vertical contracts between manufacturers and retailers might be used to deter entry.

 For instance bundling or full line forcing practices (Coca-Cola case in Multiproduct pricing class)

Exclusive dealing contracts: Mars vs HB case.

- The case starts in ireland in 1989. Ice-cream bars are mostly sold in gas stations.
- HB (Unilever) has 79% of the ice-cream bar market and, in 1989, Mars enters.
- HB freely supplies small retailers with freezers. Mars market share rises up to 42%.
- HB requires exclusivity: "only HB ice cream bars must be stocked in my freezers". Mars' market share decreases to 20%. Mars cannot fight back by offering its own freezers because shops are too small.
- The European Court of Justice confirms the EC's prohibition of free freezers in 2003.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ → つく()

Exercice 1: Aghion and Bolton (1987)

M sells a good to *A* who is willing to pay at most p = 1 for one unit. The unit cost of *M* is $c_M = \frac{1}{2}$. An entrant, *E* can produce the same good at an unknown unit cost c_E uniformly distributed over [0, 1].

- In t = 0, A and M sign a contract or not;
- In t = 1, E observes the contract, learns its unit cost c_E and chooses to enter or not.
- In t = 2, firms set their prices.
- In t = 3, A decides where to buy.

- 1. Without contract, the competition is a la Bertrand.
 - a. Determine the equilibrium and the probability ϕ of entry.
 - b. What are the expected profits?
- 2. M offers a take-it-or-leave-it contract (P, P_0) where P is the price that A must pay if he chooses to buy the good from M and P_0 is the penalty A must pay to M if he buys from E.
 - a. Given (P, P_0) , under which conditions does E enter?
 - b. What is the profit of A if he accepts a contract (P, P_0) ?
 - c. Determine the optimal contract (P, P_0) for M.
 - d. What are the expected profits under this contract? Comment!

<ロ><同><同><目><日><日><日><日><日><日><10</td>

References

- Aghion, P. and P. Bolton, (1987). Contracts as a Barrier to Entry. The American Economic Review, 77(3), 388-401.
- Fudenberg, D. and J. Tirole (1991), "Game Theory", MIT Press, Chapter 9.
- Gelman, J. and S. Salop (1983), "Judo Economics: Capacity Limitation and Coupon Competition", *The Bell Journal of Economics*, 14, 2, p315-325.
- Selten, R. (1978), "The Chain Store Paradox", Theory and Decision, 9, p127-159.

(ロ) (同) (三) (三) (三) (○) (○)

back

Two events A and B respectively occur with probability p(A) and p(B). Bayes's rule is as follows:

$$p(A/B) = rac{p(B/A)P(A)}{p(B)}$$

where conditional probabilities:

p(A/B) is the likelihood of event A occurring given that B is true;
 p(B/A) is the likelihood of event B occurring given that A is true.
 Here:

$$p(tough/fight) = rac{p(fight/tough) imes p(tough)}{p(fight)} = rac{p}{p+eta(1-p)} > p$$

• This revised probability decreases with β .

► p(tough/fight) = 1 when $\beta = 0$ and p(tough/fight) = p when $\beta = 1$.

UK petrol price war

3 types of companies hold retail gasoline stations in UK: Vertically integrated oil companies (Shell, ESSO, British Petroleum,...), supermarkets, independent retailers.

Supermarkets' market share rose from 1% in 1980 to 6% in 1990. ESSO the largest player with 21% market share hesitates to launch a price war...

Supermarkets have reached 20% market share while the market share of Esso dropped to 16%. ESSO launch "Price Watch" in north east of England and Scotland: ESSO will match the lowest supermarket price in 3 miles around the station.

Extension of Price Watch to all its gas station and immediate price war in response by BP and Shell.

The Taxonomy: an Example

In 1982, Philips should decide to establish CD pressing factory and of the size of this factory. Philips fears Sony's reaction.

- Puppy Dog: Don't enter and Sony won't enter (The investment will make us tougher and Sony will react TOUGHER).
- Top Dog: Enter by building a massive factory, Sony will stay out of the market. Commitment to be TOUGH to make its rival SOFT.
- Fat Cat: Enter by building a small factory, Sony won't feel threatened. Commitment to be SOFT to also make its rival SOFT.
- Lean and Hungry Look: Stay out of the market. But the commitment to be SOFT makes me look TOUGHER.

back