# ECO 650: Firms' Strategies and Markets Innovation

Claire Chambolle

29/11/2023

# To innovate enables firm to acquire a competitive advantage toward its rival.

- ► Lowering its production cost.
- ► Improving its quality.
- Create a new product (completely new, new variety, new formula, new packaging,...)

#### Protection-Patent

- ► The story of Robert Kearns and its "intermittent windshield wiper"

  See The newyorker article: "the-flash-of-genius": https://www.
  newyorker.com/magazine/1993/01/11/the-flash-of-genius
- If an innovation is not protected ⇒ The innovator fails to appropriate the rent of its innovation because of the risk of imitation
  - Large fixed cost difficult to recover for the innovator
  - ▶ Uncertainty: Proba for a new medecine to be approved for patient use is about 1/10 000, Proba to be published for a book, ...
- How to protect an innovation ?
  - Patents: In the US and EU the term of a patent is 20 years.
  - ► Copyright: Longer period \( \sigma \) 50 years
  - Secret: Coca-Cola

#### https:

 $//{\tt www.uspto.gov/web/offices/ac/ido/oeip/taf/us\_stat.htm}$ 

Table: Patents in the US

| Year | Patent applications | Patents granted | Share |
|------|---------------------|-----------------|-------|
| 1973 | 110 000             | 79 000          | 71%   |
| 1983 | 112000              | 62000           | 55%   |
| 1993 | 189 000             | 110 000         | 58%   |
| 2003 | 366 000             | 187 000         | 49%   |
| 2015 | 630 000             | 325 000         | 52%   |
| 2019 | 669 434             | 391 103         | 52%   |

# Trends in patenting

Europe is an attractive technology market for European and international companies

#### Patent applications

at the European Patent Office 2018 - 2020

| 174 481 | 181 532 | 180 250 |
|---------|---------|---------|
|         |         |         |
|         |         |         |
|         |         |         |
| 2018    | 2019    | 2020    |

-0.7%

#### Companies from Europe: Relative growth compared with 2019



EPO states filing more than 1 000 applications; changes in filing volumes areater than +1-2%

#### Countries of origin:

The 38 member states of the EPO account for almost half of all European patent applications



#### Growth in filings from the five leading patent territories



All figures are based on European patient applications. Status: 12.2021 eog.dra/loatent-index/020

#### Top technology fields: Strong growth in healthcare











#### Top applicants for European patents in 2020





# The patent dilemma

- ► A patent grants a "temporary" monopoly power to the innovator to protect the innovator and favor innovation
- ► The monopoly position creates a dead weight loss

#### Two key variables to control this balance:

- ► The lenght of the patent
- ► The breadth of the patent

# The optimal lenght of a patent

#### **Assumptions**

- Assume an innovation creates a social surplus W at each period.
- ightharpoonup The discount factor is  $\delta$ .
- ▶ The innovation cost is C and is paid in t = 0.

The social value of Innovation is:

$$V = -C + W[\delta + \delta^2 + \dots \delta^T]$$

When  $T \to \infty$ ,  $V \to W \frac{\delta}{1-\delta} - C$ . V is increasing with  $\delta$ . No reason to consider a limited time for the value of innovation.

# The optimal lenght of a patent

# Assumptions

- ightharpoonup This innovation is protected by a patent for a lenght T.
- From T + 1 and on, there is Bertand competition.
- We denote  $\pi = \alpha W$  with  $\alpha \in [0,1]$  the profit of the monopolist innovator. We have  $W = S + \pi + D$ . We denote  $D = \beta W$ .



#### The social value of an Innovation protected by a brevet for T periods is:

$$V_B = \underbrace{W \frac{\delta}{1-\delta} - C}_{ ext{Social Value of innovation}} - \underbrace{\beta W \delta [1+\delta+...+\delta^{T-1}]}_{ ext{Social cost of patent protection}}$$

The innovator's incentive to innovate is:

$$V_I = \alpha WL - C$$

Comparing  $V_I$  and  $V_B$ , we obtain :

$$V_I < V_B$$

$$(\alpha + \beta)L < \frac{\delta}{1 - \delta}$$

Using 
$$L = \frac{\delta(1-\delta^T)}{1-\delta}$$

$$\Rightarrow \alpha + \beta < \frac{\delta}{1 - \delta} \frac{1}{L} = \frac{1}{(1 - \delta^T)} > 1$$

- ► A single innovator protected by a patent innovates less than what would be socially optimal.
- ► The social value of an innovation protected by a patent decreases with *L* which increases with *T*.
- ► What happens with competition?

# Innovation-Patent and competition

#### **Assumptions**

- Assume that there is free entry
- n firm can spend the cost C and each of them has a probability p to fail.
- ► Even if several firms innovate at the same time, only one gets the patent.

The probability that all firms fail is  $p^n$ .

The probability that at least one succeeds is  $1 - p^n$ .

Each firm has a probability  $\frac{1}{n}$  to get the patent in case there is at least one innovation, i.e.  $\frac{1}{n}(1-p^n)$ .

- At the social level, the optimal number of firm n maximizes  $(1-p^n)(W\frac{\delta}{1-\delta}-\beta WL)-nC$
- ► FOC:  $\frac{\partial ((1-p^n)(W\frac{\delta}{1-\delta}-\beta WL))}{\partial n} = \frac{\partial (nC)}{\partial n}$
- ▶ Because of free entry, the number of firms that innovates in equilibrium is such that  $(1 p^n)\alpha WL = nC$ .



#### Remember

- ▶ When the lenght of the patent is too short, there is less firms that innovate compared to the social optimum.
- ► When the lenght of the patent is too long, there is too much entry. Race for patents leads to an overinvestment!
- ➤ The breadth of a patent defines how similar a product must be to infringe a patent. If the patent breadth is large it reduces the social value of the innovation and increases the profit of the innovator.
  - ⇒ Patent breadth and lenght are substitutable tools.

### Alternative incentive mechanisms: Prizes or Subsidies

- A reward  $R = \alpha WL$  to the innovator: same incentive to innovate as with a patent of lenght L but no deadweight loss.
- ▶ Offering a reward  $R = C + \epsilon$  works also. The innovator is paid back for its innovation cost. But impossible when success is random
- ▶ Prizes require information about W,  $\alpha$  and C + government funding ⇒ taxes?
- Prices are often announced in advance : Lépine awards
- Numerous examples of targeted prizes:
  - 1795 : Napoleon 1st had organized a competition to reward the best food preservation process for army! Nicolas Appert invented "tinned food".
  - ▶ 1996 : The X prize (10 millions ) to transport humans in space (100 km height)
  - ▶ 2006: The H prize technical challenges (hydrogen production and storage, hydrogen vehicles, etc...)

### Market structure and innovation incentives

The Shumpetarian view is often opposed to the Arrow view.

- ► Arrow (1962) shows that paradoxically the innovation incentives of a monopoly might be lower than that of competing firms.
- ► Federico, Angus and Valletti (2017) show that the merger may either reduce or boost the overall level of innovation.
- Aghion et al (2005) find an inverted U shape between innovation and concentration.

# The Arrow replacement effect

#### **Assumptions**

- ▶ Initially a firms' marginal cost is \(\overline{c}\).
- ▶ In case of innovation the marginal cost is  $\underline{c} < \overline{c}$ .
- ▶ The monopoly price is denoted  $p^M(c)$ . In case of competition, firms compete a la Bertrand.
- Innovation can either be drastic or non drastric.

## Innovation level

- ▶ Drastic innovation:  $p^M(\underline{c}) < \overline{c}$
- ▶ Non drastic innovation:  $p^M(\underline{c}) > \overline{c}$
- ▶ Monopoly price is such that : Rm(q) = Cm(q)



# Competition vs Monopoly with drastic innovation

- ► Competitive situation [ex post-ex ante]
  - ex ante: 0
  - ightharpoonup ex post: $(p^m(\underline{c}) \underline{c})q^m(\underline{c})$
- ► Monopoly :[ex post-ex ante]
  - ightharpoonup ex ante:  $(p^m(\overline{c}) \overline{c})q^m(\overline{c})$
  - ightharpoonup ex post:  $(p^m(\underline{c}) \underline{c})q^m(\underline{c})$

It is immediate that incentives to innovate are lower in the monopoly case! This is because the monopoly replaces itself.

# Competition vs Monopoly with non drastic innovation

- ▶ Competitive situation [ex post-ex ante= (1)+(2)]
  - ex ante: 0
  - ightharpoonup ex post: $q(\overline{c})(\overline{c}-\underline{c})$
- ► Monopoly :[ex post-ex ante= (1)]
  - ex ante:  $(p^m(\overline{c}) \overline{c})q^m(\overline{c})$
  - ightharpoonup ex post:  $(p^m(\underline{c}) \underline{c})q^m(\underline{c})$



# Federico, Angus & Valletti (2017)

#### **Assumptions**

- Each firm 1 and 2 is a research lab that searches for an innovation that will create a new market.
- ▶ A firm innovates with probability  $\lambda_i$  at a convex cost  $C(\lambda_i)$ .
- ▶ If only one firm succeeds, it obtains  $\Pi_1$  and the other firm gets 0.
- ▶ If both firms succeed, each obtains  $\pi_2$ .
- ▶ We analyze in turn the case in which the two research labs compete and the case of merger between the two labs.

# Federico, Angus & Valletti (2017)

#### **Competition Case**

Each firm *i* chooses its innovation level that maximizes its profit:

$$E(Profit_i) = \lambda_i((1 - \lambda_j)\Pi_1 + \lambda_j\pi_2) - C(\lambda_i)$$

The FOC is symmetric and in equilibrium  $\lambda^*$  is defined by:

$$(1-\lambda^*)\Pi_1 + \lambda^*\pi_2 = C'(\lambda^*)$$

# Federico, Angus & Valletti (2017)

#### **Merger Case**

- The new merged entity now chooses its level of innovation for its two research labs.
- ▶ If both labs innovate, they do not compete as fiercely as before and thus obtain a joint profit  $\Pi_2 \ge \Pi_1$ .
- ► Cost convexity ensures that it prefers investing in both labs rather than closing one lab. Given the symmetry, its profits becomes:

$$E(Profit_m) = 2\lambda((1-\lambda)\Pi_1 + \lambda^2\Pi_2 - 2C(\lambda))$$

The FOC defines the equilibrium  $\lambda^m$  as:

$$(2 - 4\lambda^m)\Pi_1 + 2\lambda^m\Pi_2 = 2C'(\lambda^m)$$

$$\Leftrightarrow (1 - \lambda^m)\Pi_1 + \lambda^m(\Pi_2 - \Pi_1) = C'(\lambda^m)$$

$$\Leftrightarrow (2 - 4\lambda^m)\Pi_1 + \lambda^m(\Pi_2 - \Pi_1) = C'(\lambda^m)$$

# Federico, Langus & Valletti (2017)

#### Result

- The merged entity invests less in innovation than the duopoly firms if and only if  $\Pi_2 \Pi_1 \le \pi_2$ , i.e. when the merged entity incremental gain from a second innovation is smaller than the profit of an innovator when both firms innovate in the pre-merger scenario.
- In the homogeneous Cournot case for instance  $\pi_2$  would be the Cournot profit of one firm and innovation being undifferentiated, we would have  $\Pi_2 = \Pi_1$ . In that case the merger always reduces the level of innovation.
- The exemple of Hotelling –See Exercise 1– provides an opposite result.

### Exercise 1:

#### **Assumptions:**

- Consider that consumers are uniformly distributed along the Hotelling line [0,1].
- ▶ Two firms 1 and 2 are located at the extreme.
- Consumers incurs a quadratic transportation cost and the utility is of the form :  $V td^2 p$  where  $d = |x_i x|$  is the distance to firm i.
- We apply the model of Federico, Angus & Valletti (2017) and thus look for the profit that firms obtain in all cases, i.e.  $\Pi_1$ ,  $\pi_2$  and  $\Pi_2$ .

#### **Questions:**

- 1. Determine  $\Pi_1$ , i.e. the profit when only firm is active, firm 1 say.
  - a) Determine the demand of firm 1 for V > 3t.
  - b) Write down the profit of firm 1 and determine its optimal price and the value of  $\Pi_1$ .
- 2. Determine the profit  $\pi_2$  when the two firms are active on the market.
- Determine the profit Π<sub>2</sub> that a merged entity would get from a second innovation.
- 4. Is there more or less innovation, after the merger?

- 1. Determine  $\Pi_1$ , i.e. the profit when only firm is active , firm 1 say for V>3t.
- a) Determine the demand of firm 1.

The address of the consumer indifferent between buying the product or not is  $V-tx^2-p\geq 0 \Leftrightarrow \hat{x}=(\frac{V-P}{t})^{1/2}$ 

b) Write down the profit of firm 1 and determine its optimal price and the value of  $\Pi_1$ .

The profit of firm 1 is  $p(\frac{V-P}{t})^{1/2}$ . It is maximized for  $p_1=\frac{2V}{3}$  and the corresponding demand is  $(\frac{V}{3t})^{1/2}$ . However, for V>3t it means that the demand is larger than 1 which is not possible.

This implies that in equilibrium the market is covered, all consumers are served and the price is the largest such that it serves all consumers, i.e.  $p_1 = V - t$ , and  $\Pi_1 = V - t$ .

### **Exercice 1: Solution**

2. Determine the profit  $\pi_2$  when the two firms are active on the market.

Here, we determine the address of the consumer indifferent between the two firms

$$V - tx^2 - p = V - t(1-x)^2 - p \Leftrightarrow \tilde{x} = \frac{1}{2} - \frac{(p_1 - p_2)}{2t}.$$

Thus firm 1 maximizes

$$p_1(\frac{1}{2}-\frac{(p_1-p_2)}{2t})$$

with respect to  $p_1$ . The FOC is :

$$\frac{1}{2} - \frac{p_1}{t} + \frac{p_2}{2t} = 0.$$

Using symmetry, we obtain as usual that  $p_1 = p_2 = t$  and  $\Pi_2 = \frac{t}{2}$ .

### Exercice 1: Solution

- 3. Determine the profit  $\Pi_2$  that a merged entity would get from a second innovation.
- ▶ If the merged entity has one innovation, it obtains  $\Pi_1$ .
- With two innovations, it can instead of competing coordinate the prices of the two labs.
- Suppose that the merged firm sets the same price p at both labs. It serves all consumers as long as the consumer located at the center, i.e. in  $x=\frac{1}{2}$  buys the product, i.e. as long as  $p \leq V \frac{t}{4}$ . Therefore,  $\Pi_2 = V \frac{t}{4}$ .

- 4. Is there more or less innovation after the merger?
- We directly apply the condition of Federico, Angus &Valletti (2017)
- ▶  $\pi_2 = \frac{t}{2}$  and therefore we have that  $\Pi_2 \Pi_1 \ge \pi_2$  which implies that there is more innovation after the merger.

Conclusion: in presence of strong differentiation among innovations, the merger boosts the incentives to innovate.

# R&D diffusion and Cooperation

- ▶ Patent licensing
  - Incentive to sell the patent to other firms.
  - Patent trolls: Self defense system against infringement!
  - Patent pools: firms put in common their complementary patents often pro competitive (lower prices.)
- ► Firms voluntarily release their innovation : The open source software industry!
- R&D cooperation through "Research Joint Ventures" is often encouraged by antitrust legislation!
  - Obvious when research costs operate increasing returns to scale (e.g. high fix cost to build a lab)
  - More ambigous with decreasing return to scale.

# Patent Licensing

#### **Assumptions:**

- An innovation reduces the marginal cost of an innovator from c to c-x.
- ► The innovator can choose a royalty rate *r* at which it licenses its new technology.
- ▶ We consider a 3-stage game :
  - 1. The innovator sets r,
  - 2. Other firms decide whether or not to become licensee,
  - 3. Firms compete à la Cournot.

# Patent Licensing

- ► Each firm maximizes her profit  $\pi_i = (a \sum_i q_i c_i)q_i$ .
- ► The FOC is:

$$a-2q_i-\sum_{j\neq i}q_j-c_i=0$$

Summing all the first order conditions, we obtain:

$$na - Q - nQ - \sum_{i} c_i = 0$$

which implies that  $Q = \frac{na - \sum_{i} c_i}{n+1}$ .

 $P = \frac{a + \sum_{i} c_i}{n+1}$  and the optimal quantity is:

$$q_i^* = \frac{1}{n+1}(a - nc_i + \sum_{i \neq i} c_j)$$

▶ In equilibrium firm ui obtains  $\Pi_i^* = (q_i^*)^2$ 



# Patent Licensing

▶ In stage 3), the innovator i has a cost c - x and its n - 1 competitors have a cost c - x + r.

$$q_i^* = \frac{1}{n+1}(a-(c-x)+(n-1)r)$$

$$q_i^* = \frac{1}{n+1}(a-2r-(c-x)))$$

and

$$P^* = \frac{a + n(c - x) + (n - 1)r}{n + 1}$$

- ▶ It is straightforward that a licensee accepts any royalty  $0 < r \le x$ .
- ▶ The innovator chooses *r* to maximize its profit:

$$\pi_i = (P-c+x)q_i^* + r(n-1)q_i^* = (q_i^*)^2 + r(n-1)q_i^*$$

► The FOC is:

$$\frac{\partial \pi_i}{\partial r} = 2q_i^* \frac{\partial q_i^*}{\partial r} + r(n-1) \frac{\partial q_l^*}{\partial r} = 0$$

- ▶ We obtain  $\frac{\partial \pi_i}{\partial r} = \frac{(n-1)(n+3)(a-c-2r+x)}{(n+1)^2} > 0$ . Therefore, the maximum is obtained for r = x.
- ▶ With licensing the innovator's profit is

$$\pi_i^* = \frac{(a-c)^2 + (2n+n^2-1)(a-c)x + x^2}{(n+1)^2}.$$

- Without licensing, the profit of the innovator would be  $\hat{\pi}_i = \frac{(a-c+nx)^2}{(n+1)^2}$ .
- $\hat{\pi}_i < \pi_i^*$ : Whether the innovator licenses its patent or not, the competitive situation is the same and the marginal cost of the innovator is c-x whereas, at r=x, the licensee's cost is c. The innovator now gets the additional profit of licensees.

# Open source

- Firms who sell softwares use object code
- Open source softwares making the "source code" available for free have grown.
  - The operating system Linux
  - Web server Apache,
  - Web browser Firefox;
- ► The main rationale are
  - The existence of spillovers: the innovator benefits from the feedback of developers who fix bugs but also add developments and extensions.
  - The existence of a specificity of the software for the innovator (unapropriable component).

# A simple model of Open Source

#### **Assumptions:**

- ▶ Demand is linear: p = a Q where  $Q = \sum q_i$  and i = 1, ...n firms are competing à la Cournot.
- ▶ All firms have initially a unit cost c > 0
- ▶ If firm *i* innovates, her cost reduces to c = c x
- ▶ The firm can choose to keep secret or disclose her innovation.
- ▶ In case of disclosure, her cost becomes  $\underline{c}' = c \alpha x$  with  $\alpha > 1$  to reflect the benefit withdrawn from others' code developments.
- In case of disclosure, the cost of the innovator's rivals becomes  $\hat{c} = c \alpha \beta x$  with  $\beta < 1$  to reflect the specificity of firm 1 innovation.

# A simple model of Open Source

In a Cournot competition with n firms and an inverse demand  $P = a - \sum_{i=1}^{n} q_{i}$ , the optimal quantity is:

$$q_i^* = \frac{1}{n+1}(a - nc_i + \sum_{j \neq i} c_j)$$

and

$$\Pi_i = (q_i^*)^2.$$

▶ The profit of firm if she keeps her innovation secret is:

$$\Pi_i^S = \frac{1}{(n+1)^2} (a - n(c-x) + (n-1)c)^2$$

The profit of firm if she discloses her innovation is:

$$\Pi_i^D = \frac{1}{(n+1)^2} (a - n(c - \alpha x) + (n-1)(c - \alpha \beta x))^2$$

# A simple model of Open Source

Comparing  $\Pi_i^S$  with  $\Pi_i^D$ , we obtain the following result. The innovator prefers to disclose her innovation whenever

$$\alpha > \frac{n}{n-\beta(n-1)}.$$

- ▶ It is simple to show that this threshold increases with n and  $\beta$ .
- ▶ The intensity of competition and the absence of specificity in the innovation reduce the incentive for disclosure.

### References

- Arrow K. (1962), Economic welfare and the allocation of resources for invention in The Rate and Direction of Inventive Activity, Princeton U.P., pp. 609-626.
- Belleflamme, P. and M. Peitz (2010), Industrial Organization, Markets and Strategies, Cambridge University Press.
- Federico, G., Langus, G. and T. Valletti, (2018), Horizontal Mergers and Product Innovation, *International Journal of Industrial* Organization, Pages 1-23.
- Lampe, R. and Moser, P. (2013), Patent pools and innovation in substitute technologies-evidence from the 19th-century sewing machine industry. The RAND Journal of Economics, 44: 757-778.
- Oz Shy, Industrial Organization, Theory and Applications, Chapter 9, The MIT Press, 1995.