Firms' Strategies and Markets Advertising

Claire Chambolle

October, 10, 2023

Exercise 1

Assumptions

- Consumers are uniformly distributed along a segment $[0,1]$. A firm is localized in 0 and another firm in 1 .
- A consumer who travels a distance x to buy one unit at price p has a utility $U=v-p-t x$ if he buys and 0 if he does not buy. There is no utility for a second unit.
- A consumer buys only if he receives an ad. Let Φ_{i} denote the share of consumers who have received an ad from i. The cost to reach this fraction of demand is $A(\phi)=\frac{a \phi^{2}}{2}$ with $a \geq \frac{t}{2}$.
- If only one firm serves the market, we assume that the market is covered.

Questions

1. What is the demand of consumers who receive only an ad from i ?
2. What is the demand of consumers who receive only an ad from i?

- The probability to receive an ad only from firm i is: $\phi_{i}\left(1-\phi_{j}\right)$.
- Consumers who buy are such that $v-p_{i}-t x \geq 0$
- $D_{i}=1$ if $x_{0}=\frac{v-p}{t}>1$ (covered market)! \Rightarrow We focus on this case for simplicity
- $D_{i}=\frac{v-p_{i}}{t}$ otherwise (uncovered market).

2. What is the demand of consumers who receive an ad from i and j ?

- The probability to receive an ad from both firms is: $\phi_{i} \phi_{j}$.
- Among them the address of the indifferent consumer \tilde{x} is such that $v-p_{i}-t x=v-p_{j}-t(1-x)$ or $\tilde{x}=\frac{1}{2}+\frac{\left(p_{j}-p_{i}\right)}{2 t}$.
- \tilde{x} (resp. 1- \tilde{x}) is the demand for i (resp. j) when the gap in price is not too high.

3. What is the total demand for firm i ? How the price elasticity of demand varies in ϕ in $p_{i}=p_{j}=p$ and $\phi_{i}=\phi_{j}=\phi$?

- $D_{i}=\phi_{i}\left[\left(1-\phi_{j}\right)+\phi_{j} \tilde{x}\right]$
- At point $p_{i}=p_{j}=p$ and $\phi_{i}=\phi_{j}=\phi$, the elasticity $\epsilon=\frac{-p_{i} \partial D_{i} / \partial p_{i}}{D_{i}}=\frac{p \phi}{t(2-\phi)}$ which increases in ϕ.
- A larger ϕ implies a larger the probability that consumers are informed of the existence of both goods: They are thus more sensitive to price.

4. Firms choose simultaneously their price and their ad level.

Determine the symmetric Nash equilibrium of this game.

- The profit of firm i is:

$$
\Pi_{i}=\left(p_{i}-c\right) D_{i}-A\left(\phi_{i}\right)
$$

\checkmark with $D_{i}=\phi_{i}\left[\left(1-\phi_{j}\right)+\phi_{j} \frac{p_{i}-p_{j}+t}{2 t}\right]=\frac{\phi_{i}}{2 t}\left[\left(1-\phi_{j}\right) 2 t+\phi_{j}\left(p_{i}-p_{j}+t\right)\right]$

- The first order conditions are :

$$
\begin{aligned}
2 p_{i} & =c+t+p_{j}+\frac{2\left(1-\phi_{j}\right) t}{\phi_{j}} \\
\phi_{i} & =\left(p_{i}-c\right) \frac{\left(1-\phi_{j}+\phi_{j} \tilde{x}\right)}{a}
\end{aligned}
$$

- At the symmetric equilibrium $p_{i}=p_{j}=p^{*}=c+\sqrt{2 a t}$ and $\tilde{x}=\frac{1}{2}$ and $\phi_{i}=\phi_{j}=\phi^{*}=\frac{2}{(1+\sqrt{2 a / t})}$.

Exercise 2: Advertising as a commitment device (Lal and Matutes, 1994)

Assumption

- Firms A and B are located at the extreme of a segment of lenght 1.
- Consumers are uniformly distributed along the segment and incur linear transport cost $t x$.
- A and B sell two products 1 and 2 .
- Consumers have the same willingness to pay for each good, denoted H.
- Unless they receive an ad (catalog, leaflet,...), consumers are uninformed about prices but make rational expectations about prices.
- Each firm can choose to advertise one or two goods. Advertising costs F and vehicles the information about a product's price to all consumers.
- We exclude that a consumer visit both stores. this is a simplifying assumption and in the paper they look at all cases!

Exercise 2

1. What happens if no firm advertise any product?

- If there are no advertising, consumers rationally expect that all prices are equal to H.
- Once at the store the firm knows that the transportation cost is sunk for the consumer and has an incentive to set a price H.
- Anticipating this, no consumer buy anything and therefore no profit for both firms.

2 What happens if the two firms advertise both products? Is this an equilibrium?

- Assume that the two firms advertise both products at prices $\left(p_{A 1}, p_{A 2}\right)$ and $\left(p_{B 1}, p_{B 2}\right)$ which costs $2 F$ to each firm!
- The indifferent consumer is such that the surplus it obtains in visiting A, i.e. $2 H-p_{A 1}-p_{A 2}-t \hat{x}$ is the same as the surplus it obtains in visiting B, i.e. $2 H-p_{B 1}-p_{B 2}-t(1-\hat{x})$

$$
\hat{x}=\frac{p_{B 1}+p_{B 2}-p_{A 1}-p_{A 2}+t}{2 t}
$$

- A maximizes its profit $\left(p_{A 1}+p_{A 2}\right) \hat{x}$, and B maximizes $\left(p_{B 1}+p_{B 2}\right)(1-\hat{x})!$
\checkmark This leads to $p_{A}^{*}=p_{A 1}+p_{A 2}=t$ and $p_{B}=p_{B 1}+p_{B 2}=t$.

2 What happens if the two firms advertise both products? Is this an equilibrium?

- The first important condition to check is that $t<2 H$. Then, the profit each firm realizes is $\pi_{j}=\frac{t}{2}-2 F>0 \rightarrow F<\frac{t}{4}$.
- Another condition to check is that the marginal consumer has a positive surplus, i.e. that $2 H-t-\frac{t}{2}>0 \rightarrow t<\frac{4 H}{3}$ (covered market).
- To check whether this is an equilibrium, we check that a firm, say B, has no incentive to deviate unilaterally by only advertising one of its products, say 1.
- Consumers rationnally expect that a product that is not advertised will be sold at H.

$$
\hat{x}=\frac{p_{B 1}+H-p_{A}^{*}+t}{2 t}
$$

- Maximizing its profit $\left(p_{B 1}+H\right)(1-\hat{x})$ with respect to $p_{B 1}$, we obtain $p_{B 1}=t-H$.
- The profit obtained by firm B is therefore $\pi_{B}=\frac{t}{2}-F>\frac{t}{2}-2 F$: NO.

3. Determine the two types of equilibria of this game. For which conditions on H and F do these equilibria exist?

- There are two symmetric equilibria: (i) one firm advertises 1 and the other 2 or (ii) the two firms advertise the same good.
- A and B advertise product 1. Consumers expect product 2 to be sold at price H at both stores.
- The indifferent consumer is:

$$
\hat{x}=\frac{p_{B 1}+H-p_{A 1}-H+t}{2 t} .
$$

- A maximizes its profit $\left(p_{A 1}+H\right) \hat{x}$ whereas B maximizes $\left(p_{B 1}+H\right)(1-\hat{x})$.
\checkmark We obtain $p_{A 1}=p_{B 1}=t-H$ and therefore the profit is $\frac{t}{2}-F>0$.

3. Determine the two types of equilibria of this game. For which conditions on H and F do these equilibria exist?

- There is no incentive for a firm to deviate towards no advertising as it brings no profit.
- There is no incentive to deviate towards advertising both products as it brings a lower profit $\frac{t}{2}-2 F$.
- A firm could deviate by advertising instead the other product. But as everything is symmetric here, it brings the same profit.
- From above it is immediate that there is another symmetric equilibrium in which A advertises 1 and B advertises 2 and conversely. These equilibria exists if $F<t / 2$ and if the market is covered, i.e. the marginal consumer has a positive surplus, i.e. that $t<\frac{4 H}{3}$. We may have loss leading on product 1 as it is possible to have $H-t<0$.

