ECO 650: Firms' Strategies and Markets Course 1: Multiproduct firms' pricing strategies

Claire Chambolle

September 21, 2022

Exercise 1

- Two stores H (Hypermarket) and S (Supermarket)
- H sells A and $B-S$ sells A
- $\alpha \in\left[0, \frac{1}{2}\right]$ consumers are located at H and $1-\alpha$ in S .
- Transportation cost among the stores is normalized to 1 .
- $u_{A}=1 ; u_{B}$ uniformly distributed over $[0,1]$ around each store.
- $b \in\lceil 0,1\rceil$ is the unit cost for B. No cost for A.

$$
\mathrm{H} \longrightarrow \mathrm{~A}, \mathrm{~B}
$$

$$
\mathrm{S} \longrightarrow \mathrm{~A}
$$

1. Which consumers may travel from one store to the other?
2. We note $p^{H}=p_{A}^{H}+p_{B}^{H}$ the sum of prices for the two goods at store $H ; p^{S}$ the price of A at store S. Determine the demand at each store.
3. Determine the two candidates Nash equilibria in pure strategy.
4. Assume $b \rightarrow 0$ and $\alpha=\frac{1}{9}$; show that the loss-leading equilibrium is the unique Nash equilibrium in pure strategy.
5. How do you explain the emergence of this loss-leading equilibrium?

We note $p^{H}=p_{A}^{H}+p_{B}^{H}$ the sum of prices for the two goods at store H; p^{S} the price of A at store S.

1. Which consumers may travel from one store to the other?

No consumer in H will travel to S as $u_{A}=1$.
In contrast, consumers located in S may choose to travel to H to buy the two goods A and B instead of A alone in S, i.e. when:

$$
1+u_{B}-p^{H}-1>1-p^{S} \Rightarrow u_{B}>1+p^{H}-p^{S}
$$

2 Determine the demand at each store.

- If $p^{H}>p^{S}$, no consumer travels:
- $D_{A}^{H}=\alpha$
- $D_{B}^{H}=\alpha\left(1-p_{B}^{H}\right)$
- $D^{S}=1-\alpha$.
- If $p^{H}<p^{S}$, some consumers travel from S to H to buy the two goods:
- $D_{A}^{H}=\alpha+(1-\alpha)\left(p^{S}-p^{H}\right)$
- $D_{B}^{H}=\alpha\left(1-p_{B}^{H}\right)+(1-\alpha)\left(p^{S}-p^{H}\right)$.
- $D^{S}=(1-\alpha)\left(1+p^{H}-p^{S}\right)$.

3 Determine the two candidates Nash equilibria in pure strategy.

- If $p^{H}>p^{S}$, the profit of H and S can be respectively written as:

$$
\Pi^{H}=p_{A}^{H} \alpha+\alpha\left(1-p_{B}^{H}\right)\left(p_{B}^{H}-b\right), \Pi^{S}=(1-\alpha) p^{S}
$$

Maximizing Π^{H} with respect to p_{A}^{H} and p_{B}^{H}, and Π^{S} with respect to p^{S}, we have Π^{H} strictly increases in p_{A}^{H} and Π^{S} strictly increases in p^{S}.

We obtain a local monopoly equilibrium candidate:

$$
\hat{p}_{A}^{H}=1, \hat{p}_{B}^{H}=\frac{1+b}{2}, \hat{p}^{S}=1
$$

3 Determine the two candidates Nash equilibria in pure strategy.

- If $p^{H}<p^{S}$, the profit of H and S can be written as:

$$
\begin{gathered}
\Pi^{H}=\left(p^{H}-b\right)\left[\alpha+(1-\alpha)\left(p^{S}-p^{H}\right)\right]-\alpha p_{B}^{H}\left(p_{B}^{H}-b\right) \\
\Pi^{S}=(1-\alpha) p^{S}\left(1+p^{H}-p^{S}\right)
\end{gathered}
$$

Maximizing Π^{H} with respect to p^{H} and p_{B}^{H}, and Π^{S} with respect to p^{S}, we obtain the following best reactions: we obtain $p_{B}^{H}=\frac{b}{2}<b$ and $p^{H}\left(p^{S}\right)=\frac{\alpha+(1-\alpha) p^{S}}{2(1-\alpha)} . p^{S}\left(p^{H}\right)=\frac{1+p^{H}}{2}$.
We obtain the following loss-leading equilibrium candidate :

$$
p^{H *}=\frac{1+\alpha}{3(1-\alpha)}+\frac{2 b}{3}, p_{B}^{H *}=\frac{b}{2}, p^{S *}=\frac{2-\alpha}{3(1-\alpha)}+\frac{b}{3}
$$

4 Assume $b \rightarrow 0$ and $\alpha=\frac{1}{9}$; show that the loss-leading equilibrium is the unique Nash equilibrium in pure strategy.

4 Assume $b \rightarrow 0$ and $\alpha=\frac{1}{9}$; show that the loss-leading equilibrium is the unique Nash equilibrium in pure strategy.

The equilibrium profit in the loss-leading case is:

$$
\Pi^{H *}=\frac{(1+\alpha-b(1-\alpha))^{2}}{9(1-\alpha)}+\frac{b^{2} \alpha}{4}, \Pi^{S *}=\frac{(2-\alpha)^{2}}{9(1-\alpha)}+\frac{b^{2}(1-\alpha)}{9}
$$

In the local monopoly case:

$$
\hat{\Pi}^{H}=\alpha+\frac{(1-b) \alpha}{4}, \hat{\Pi}^{S}=1-\alpha
$$

Assume $b \rightarrow 0$, when $\alpha=\frac{1}{9}$:

- In the loss-leading candidate, H obtains $\Pi^{H *}=\frac{1}{2} \cdot\left(\frac{5}{9}\right)^{2}$ and S gets

$$
\Pi^{S *}=\frac{(17)^{2}}{(9)^{2} .8} \approx 0.44 .
$$

- In the local monopoly candidate, H obtains $\hat{\Pi}^{H}=\frac{5}{9} \cdot \frac{1}{4}$ and S gets $\hat{\Pi}^{S}=\frac{8}{9}$.
Which one is the equilibrium?

4 Show that the loss-leading equilibrium is the unique Nash equilibrium in pure strategy.

- Only H could deviate unilaterally from the loss leading strategy by raising its price to the local monopoly level. No deviation here because $\Pi^{H *}>\hat{\Pi}^{H}$.
- S cannot unilaterally deviate by raising her price as it would remain in the competition situation.

Conversely when $\alpha=\frac{1}{3}$, the deviation becomes profitable.
5. How do you explain the emergence of this loss-leading equilibrium?

The logic under the result here is complementarity.

- A complementarity between the two independent products arises through the transportation cost.
- H has an incentive to sell B below cost because this is the product which has an elastic demand, and therefore lowering this price below cost can attract consumers from S.
- If instead $\alpha=\frac{1}{3}$ there is a local monopoly equilibrium. H has no incentive to compete to attract consumers from S.

Exercice 2

Food for life makes health food for active, outdoor people. They sell 3 basics products (Whey powder, high protein Strenght bar, a meal additive(Sawdust))

Consumers fall into two types:

Consumers	Whey	Strenght	Sawdust
Type A	10	16	2
Type B	3	10	13

Question: Each product costs 3 to produce and the bundle of 3 products costs 9. What is the best pricing strategy for the firm? Separate selling, Pure bundling (only bundles of 3 products must be considered)? or mixed bundling?
The firm cannot discriminate among consumers. We assume there is 1 consumer of each type (A and B) and he wants one unit of each product.

Exercice 2

Separate selling: for each product, the firm must choose either to sell the product at high price only to one type of consumers or at a lower price to the two types.

Exercice 2

Separate selling: for each product, the firm must choose either to sell the product at high price only to one type of consumers or at a lower price to the two types.

Consumers	Whey	Strenght	Sawdust
Type A	10	16	2
Type B	3	10	13

- Whey: $(10-3)>2(3-3) \rightarrow p^{W}=10$ and $\pi^{W}=7$.
- Strenght: $(16-3)<2(10-3) \rightarrow p^{S t}=10$ and $\pi^{S t}=14$.
- Sawdust: $(13-3)>2(2-3) \rightarrow p^{S a}=13$ and $\pi^{S a w}=10$.
- Total profit with separate selling strategy is $7+14+10=31$.

Consumers	Whey	Strenght	Sawdust
Type A	10	16	2
Type B	3	10	13

Pure bundling:

Highest price for type A: 28! Highest price for type B: 26!

$$
2(26-9)>(28-9)
$$

The best price for the bundle is 26 and the profit with a pure bundling strategy is: $34>31$

Consumers	Whey	Strenght	Sawdust
Type A	10	16	2
Type B	3	10	13

Mixed bundling: Highest price for the bundle is 28 ! Mixed bundling may enable to raise the price of the bundle without loosing entirely type B consumers. The firm sets $p=28$ and as type A consumers have no surplus, separate prices for each good must be such that:

$$
p^{W} \geq 10, p^{S t} \geq 16, p^{S a} \geq 2
$$

Under this constraint, the best prices the firm can offer are:

$$
p^{W}=10, p^{S t}=16, p^{S a}=13
$$

Type A buys the bundle and Type B only buy Sawdust. Total profit with mixed bundling is

$$
(28-9)+(13-3)=29<34!
$$

Consumers	Whey	Strenght	Sawdust
Type A	10	16	2
Type B	3	10	13

Authorizing bundles of two products, we compare all combinations of bundles of two goods and separate pricing and the best strategy is:

- Offer a bundle of Sawdust and Strenght at 23, while offering a price for separate sales $p^{W}=10, p^{S t}=16$ and $p^{S a}=13$.
- Type B buys the bundle only whereas Type A buys Whey and Strenght separately.
- The firms makes: $(23-6)+(10-3)+(16-3)=37$!

