Firms' Strategies and Markets Course 4: Dynamic Pricing

Claire Chambolle

October, 26th, 2022

Dynamic Pricing

- Repeated interactions among firms may enable collusive strategies (IO class M1)
 - High prices over time.
- Reputation or Signaling strategies can occur (Class / Advertising & Entry)
 - Either a low or a high price can signal a high quality to an uninformed consumer in a first period.
 - ▶ Fighting on one market can create the reputation of being tough.
- We focus here on "consumer inertia" which may come from different sources and imply various firm's dynamic pricing strategies.
 - Durable Goods
 - ▶ Search costs → generate temporal price dispersion.
 - Switching costs → Consumers are locked-in within the same firm

Durable goods: Goods that are not consumed or destroyed in use; Consumers derive the benefit of their purchase for a period of time (several years).

► Cars, Washing Machines, Computers, Smartphones ...

Insights: A durable good monopoly who cannot discriminate in a given period among heterogenous consumers can use intertemporal discrimination to extract more surplus from consumers.

- Some consumers buy in the first period;
- Others delay their purchase expecting a lower price.

Assumptions

- ▶ A durable monopoly with a production cost 0.
- A continuum of heterogenous consumers live two periods $t = \{1, 2\}$. Consumers buy either 0 or 1 unit and their valuation for the good v is uniformly distributed over [0, 1].
- δ is the discount factor.
- ▶ The monopoly sets p_1 in t = 1 and p_2 in t = 2.

Consider first the benchmark case in which the monopoly can sell only in t = 1 at price p.

- A consumer is willing to purchase the good if $(1 + \delta)v p > 0$ in t = 1. The demand is $D(p) = 1 \frac{p}{1 + \delta}$.
- $\max_{p} p(1 \frac{p}{1+\delta}) \Leftrightarrow p = \frac{1+\delta}{2}$.
- The corresponding profit $\Pi = \frac{1+\delta}{4}$.

Consider now the two period pricing strategy

- For a given couple of prices (p_1, p_2) , we determine the consumer indifferent between purchasing in t = 1 and in t = 2.

$$\underbrace{(1+\delta)\tilde{v}-p_1}_{t=1}=\underbrace{\delta(\tilde{v}-p_2)}_{t=2}\Rightarrow \tilde{v}(p_1,p_2)=p_1-\delta p_2$$

- Suppose that consumers with $v > \tilde{v}$ have purchased the good in t=1. The residual demand for the good in t=2 is

$$D_2(p_1, p_2) = \tilde{v}(p_1, p_2) - p_2.$$

In t=2, the monopoly chooses p_2 to maximise $p_2D_2(p_1,p_2)$ and this gives

$$p_2(p1)=\frac{p_1}{2(1+\delta)}$$

The price in the second period is lower than half of the price in the first period. - in t = 1 now, the demand is

$$D_1(p_1,p_2) = 1 - \tilde{v}(p_1,p_2)$$

and the monopoly sets p_1 to maximise its intertemporal profit

$$\Pi_{1,2} = p_1 D_1(p_1, p_2) + \delta p_2 D_2(p_1, p_2)$$

under the constraint that $p_2(p_1) = \frac{p_1}{2(1+\delta)}$. This leads to

$$p_1 = \frac{2(1+\delta)}{(4+\delta)} < \frac{1+\delta}{2}$$

and the profit is:

$$\Pi_{1,2} = \frac{1+\delta}{(4+\delta)} < \Pi$$

The durable good monopolist

- -Obtains lower profit in selling over the two periods than only in the first.
- -Cannot prevent from competing with itself.

Remember

- ▶ A durable good monopolist may compete with itself throughout time
- Some business practices may limit this phenomenon
 - ▶ Renting the good instead of selling it! Here renting at price $p_1 = p_2 = \frac{1}{2}$ at each period brings Π .
 - ▶ Return policies, money back guarantees or repurchase agreements, ...Contracts that are offered by M to protect the consumers in t=1 against any future price cut.
 - Reputation
 - Technology (capacity constraints, planned obsolescence, new version of the product...)
- If discrete classes of consumers can be identified, intertemporal discrimination can become profitable (See Exercice 1!).

Search Costs & The Diamond Paradox

Search costs: Consumers might be imperfectly informed about prices

- ▶ If getting information is costly, $p_1 = p_2 > c$ can be an equilibrium.
- ▶ Diamond Paradox: in a duopoly $p_1 = p_2 = p^M$ might be an equilibrium
 - ▶ All consumers are uninformed about prices
 - They have no cost to learn one price and a cost ε to learn the second price!
 - For any $p_1 = p_2 = p < p^M$, a firm has an incentive to deviate towards $p + \frac{\epsilon}{2}!$

Search Costs and Temporal Price Dispersion Varian (1980): A model of "sales".

Assumptions

- ▶ Monopolistic competition among *n* symmetric firms with free entry.
- ▶ I informed consumers and $U = \frac{M}{n}$ uninformed consumers per store.
- r is the reservation price of consumers.
- ▶ C(q) is a firm cost function with strictly decreasing average cost (ex: cq + f).
- ▶ If a firm sets the lowest price, it obtains I + U consumers.
- ▶ If the firm does not set the lowest price, it obtains *U* consumers.
- ▶ If several firms have the identical lowest price, there is a tie, and they share equally I consumers among them.

There exists no symmetric pure strategy Nash equilibrium

- ▶ First, the relevant range of prices is $[p^*, r]$. If p > r, there is no demand and if $p < p^* = \frac{C(I+U)}{I+U}$ the firm obtains a negative profit even in the best case, i.e. when serving all consumers.
- ▶ If all firms set $p = p^*$, there is a tie and then profits are negative: $p^*x(U + \frac{l}{n}) C(U + \frac{l}{n}) < 0$.
- ▶ If all firms set $p \in]p^*, r]$, a slight price cut by one of the firms enables to capture all informed customers and realize a positive profit.

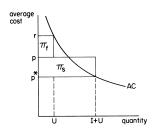
There is a symmetric equilibrium in mixed strategy.

▶ Each firm randomly chooses a price according to the same density of probability f(p) (F(p) is the distribution function) \Rightarrow Temporal price dispersion arises!

Assume that all firms have the same distribution F(p).

We build the expected profit function for a firm for any price p

- ▶ With probability $(1 F(p))^{n-1}$, p is the lowest price and then the firm earns $\pi_s(p) = p(U + I) C(U + I)$ (Success).
- ▶ With probability $1 (1 F(p))^{n-1}$, p is not the lowest price and it obtains $\pi_f(p) = pU C(U)$.



▶ The expected profit of the firm therefore is:

$$\int_{p^*}^r [\pi_s(p)(1-F(p))^{n-1} + \pi_f(p)(1-(1-F(p))^{n-1})]f(p)dp$$

 \blacktriangleright Maximizing the above profit with respect to p, the FOC is:

$$\pi_s(p)(1-F(p))^{n-1}+\pi_f(p)(1-(1-F(p))^{n-1})=0$$

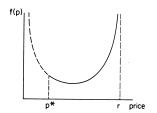
Rearranging, we obtain:

$$F(p) = egin{cases} 0 & p < p^* \ 1 - (rac{\pi_f(p)}{\pi_f(p) - \pi_s(p)})^{rac{1}{n-1}} & p \in [p^*, r] \ 1 & p < r \end{cases}$$

▶ If firms compete in a market with both informed and uninformed consumers, temporal price dispersion may arise in equilibrium. In equilibrium firms alternate (ramdomly) relatively high prices and periods of sales.

An example with c(q) = f

- $\pi_f(r) = rU f = 0 \Rightarrow U = \frac{f}{r}$
- $\pi_s(p^*) = p^*(I+U) f = 0 \Rightarrow p^* = \frac{f}{I+\frac{f}{f}}$
- ▶ The corresponding f(p) has the following shape:



- Firms tend to charge extreme prices with higher probability.
- ▶ Prices are lower as *I* increases and *f* is low (more competitive) but high prices are always charged with positive probability.

- ▶ This model also applies to competition among stores that have a base of *loyal consumers* and other *consumers that tend to switch among stores* when the store cannot distinguish among these consumers (see Narasimhan, 1988).
 - There is a tension between an incentive to set the monopoly price to loyal consumers and a competitive price for those who may go to the rival → Mixed strategy equilibrium
- ▶ These results on temporal price dispersion are robust if consumers can endogenously decide whether they want to acquire additional information through costly search.
- ▶ Empirical evidence for search costs online *vs* offline.

Switching costs

Definition: The presence of switching costs give consumers an incentive to purchase repeatedly from the same supplier.

- Transaction costs: Time and effort to change supplier (e.g. changing bank accounts, insurances, telephone company, etc...)
- ► Contractual costs: Mobile phone company that offers a contract with a phone at low price for a 24 month lock-in contract.
- Shopping costs: Purchasing several goods from one supplier rather than shopping around for different products.
- Search costs
- **.**..

Imperfect competition and switching costs Assumptions

- ▶ Two-period model with imperfect competition.
- ▶ Consumers are uniformly distributed along a Hotelling line [0,1] with a linear transportation cost -x for a distance x. Two firms A and B are located at the extremes.

Switching costs

- After t = 1, a share λ of consumers leaves the market and is replaced by new consumers.
- The remaining share of consumers (1λ) who has bought from firm K = A, B in t = 1 incurs a cost z to switch to the other firm in t = 2.
- Old consumers keep their preference from one period to the next.
- Consumers have a reservation price r such that the market is fully covered.
- Consumers are myopic.

Benchmark without switching cost

- Both periods are identical and independent.
- ▶ Old and new consumers behave in the same way:
 - ▶ A consumer x buys from A in t = 1, 2 if:

$$r-x-p_A^t \geq r-(1-x)-p_B^t \Rightarrow x \geq \tilde{x} = \frac{1}{2}(1+p_B^t-p_A^t)$$

▶ In each t = 1, 2 firm A (resp. firm B) maximizes :

$$p_A^t \tilde{x} \Rightarrow p_A^t = p_B^t = 1$$

• Equilibrium profits are $\Pi_K^t = \frac{1}{2}$ for each firm.

- Assume that in t=1, each firm A and B has obtained respectively a share α and $1-\alpha$ of the market.
- ▶ A fraction (1λ) of consumers remain
 - ▶ A consumer x who bought from A in t = 1 buys again from A if:

$$r - x - p_A^2 \ge r - (1 - x) - p_B^2 - z \Rightarrow x \le \hat{x}_A = \frac{1}{2} (1 + p_B^2 - p_A^2 + z)$$

- \blacktriangleright A fraction λ are new consumers
 - A new consumer x buys from A in t = 2 if:

$$r-x-p_A^2 \ge r-(1-x)-p_B^2 \Rightarrow x \le \hat{x} = \frac{1}{2}(1+p_B^2-p_A^2)$$

Assume $\hat{x}_A > \alpha$ (we check *ex post* this condition), the demand is:

$$q_A^2(p_A^1, p_B^1, p_A^2, p_B^2) = (1 - \lambda)\alpha(p_A^1, p_B^1) + \lambda \frac{1}{2}(1 + p_B^2 - p_A^2)$$

► The same reasoning applies for *B*.

The FOC writes as:

$$\frac{\partial \pi_A^2}{\partial p_A^2} = q_A^2 + p_A^2 \frac{\partial q_A^2}{\partial p_A^2} = 0$$

We obtain:

$$p_A^2(p_B^2) = \frac{1-\lambda}{\lambda}\alpha + \frac{1}{2}(1+p_B^2)$$

- Firms compete more aggressively to gain new costumers: $\frac{\partial p_A^2(p_B^2)}{\partial \lambda} < 0$
- ► Firms compete less aggressively as the share of "captive consumer" increases: $\frac{\partial p_A^2(p_B^2)}{\partial \alpha} > 0$
- ▶ In t = 2 equilibrium, $\pi_A^2(\alpha(p_A^1, p_B^1)) = \frac{1}{2\lambda}(1 + \frac{1}{3}(2\alpha 1)(1 \lambda))^2$ with $\alpha(p_A^1, p_B^1) = \frac{1}{2}(1 + p_B^1 p_A^1)$.

In t=1 firms take into account their intertemporal profit over the two periods.

$$\pi_A(p_A^1, p_B^1) = \pi_A^1(p_A^1, p_B^1) + \pi_A^2(\alpha(p_A^1, p_B^1))$$

The FOC is:

$$\frac{\partial \pi_{A}(p_{A}^{1}, p_{B}^{1})}{\partial p_{A}^{1}} = \frac{\partial \pi_{A}^{1}(p_{A}^{1}, p_{B}^{1})}{\partial p_{A}^{1}} + \underbrace{\frac{\partial \pi_{A}^{2}(\alpha(p_{A}^{1}, p_{B}^{1}))}{\partial \alpha}}_{+} \underbrace{\frac{\partial \alpha(p_{A}^{1}, p_{A}^{2})}{\partial p_{A}^{1}}}_{-} = 0$$

- For $\lambda>\frac{2}{5}$, in equilibrium $\alpha=\frac{1}{2}$, and $p_K^1=\frac{5\lambda-2}{3}$ and $p_K^2=\frac{1}{\lambda}$. For $\lambda\leq\frac{2}{5}$, in equilibrium $\alpha=\frac{1}{2}$, and $p_K^1=0$ and $p_K^2=\frac{1}{\lambda}$.
- ▶ In the benchmark case without switching costs: $p_K^1 = p_K^2 = 1$.
- ▶ In the first period $p_K^1 < 1$ is lower to lock in as much consumers as possible (second period profit effect).
- ▶ In the second period though, $p_K^2 > 1$ the equilibrium price is higher because firms compete only for new consumers.

- ▶ In terms of profit, each firm loses in t = 1 but earns more in t = 2 than absent switching costs.
- ▶ In equilibrium the intertemporal profit with switching costs is:

$$\pi_{A} = \begin{cases} \frac{1}{6} \left(\frac{1}{\lambda} + 5 \right) & \text{for } \lambda > \frac{2}{5}, \\ \frac{1}{2\lambda} & \text{for } \lambda < \frac{2}{5} \end{cases}$$

- ▶ In equilibrium, the intertemporal profit without switching cost is 1.
- ▶ Here firms are always better off when they can lock-in consumers and the effect on consumers surplus is negative.

Endogenous switching cost: Coupons

- ► **Coupons** are discount offered on the price of the product at the next purchase.
- ▶ The oldest "Coupon" by TheCCC

Assumptions

- \triangleright Consumers redraw their types in t=2.
- ▶ In t=1 firms can offer coupons $c_K > 0$ to their loyal consumers. In t=2 the consumer will pay $p_A^2-c_A$ if he buys again from A.
- Consumers are forward looking.

Competition in period 2

 \triangleright A consumer who purchased from A in t=1, buys from A again if its new address x is such that

$$r - x - (p_A^2 - c_A) > r - (1 - x) - p_B^2 \Rightarrow x < \hat{x}_A = \frac{1}{2}(1 + p_B^2 - p_A^2 + c_A)$$

- \triangleright Similarly, consumers who purchased from B in t=1 buys from B again if $x > \hat{x}_B = \frac{1}{2}(1 + p_B^2 - p_A^2 - c_B)$
- We assume that $0 < \hat{x}_B \le \hat{x}_A < 1$ i.e., that there is switching in equilibrium. (We check ex post this condition)

- ▶ In t = 2, A sells to consumers who had bought from A in t = 1 (α) and do not switch $(x < \hat{x}_A)$, and those who bought from B (1α) and switch $(x < \hat{x}_B)$.
- ▶ The maximization program is:

$$\max_{p_A^2} \alpha \hat{x}_A (p_A^2 - c_A) + (1 - \alpha) \hat{x}_B p_A^2$$

▶ The best reaction function is:

$$p_A^2(p_B^2) = \frac{1}{2}(1 + p_B^2 + 2\alpha c_A - (1 - \alpha)c_B)$$

- Conversely, we obtain: $p_B^2(p_A^2) = \frac{1}{2}(1 + p_A^2 \alpha c_A + 2(1 \alpha)c_B)$
- ▶ In equilibrium,

$$p_A^2 = 1 + \alpha c_A, p_B^2 = 1 + (1 - \alpha)c_B$$

Prices paid by switching (resp. loyal) consumers are higher (resp. lower).

► Equilibrium profit in t=2 is: $\pi_A^2 = \frac{1}{2} - \frac{1}{2}\alpha(1-\alpha)c_A(c_A+c_B) < \frac{1}{2}$

▶ In t = 1, A maximizes its intertemporal profit:

$$\max_{p_A^1, c_A} p_A^1 \alpha + \pi_A^2(\alpha, c_A)$$

▶ To determine α we need to find the address of the indifferent consumer. Assuming consumers are forward looking, we compute the difference in consumer's surplus in t = 1:

$$\Delta_s^1 = (r - \alpha - p_A^1) - (r - (1 - \alpha) - p_B^1) = 1 - 2\alpha + p_B^1 - p_A^1$$

and the difference in consumer's surplus in t = 2:

$$\Delta_s^2 = \int_0^{\hat{x}_A} (r - (p_A^2 - c_A) - x) dx + \int_{\hat{x}_A}^1 (r - p_B^2 - (1 - x)) dx$$

$$- \int_0^{\hat{x}_B} (r - p_A^2 - x) dx + \int_{\hat{x}_B}^1 (r - (p_B^2 - c_B) - (1 - x)) dx$$

$$= \frac{1}{4} ((c_A + c_B)^2 + 2(c_A - c_B)) - \frac{1}{2} (c_A + c_B)^2 \alpha$$

 $\Delta_c^1 + \Delta_c^2 = 0$ gives:

$$\alpha = \frac{4(1+p_B^1-p_A^1)+(c_A+c_B)^2+2(c_A-c_B)}{2(4+(c_A+c_B)^2)}$$

▶ Deriving the intertemporal profit $\max_{p_{A}^{1},c_{A}}p_{A}^{1}\alpha+\pi_{A}^{2}(\alpha,c_{A})$ for A and B and focusing on a symetric equilibrium, we find:

$$c_A = c_B = \frac{2}{3}, p_A^1 = p_B^1 = \frac{13}{9} > 1, p_A^2 = p_B^2 = \frac{4}{3} > 1, \pi_A = \pi_B = \frac{10}{9} > 1.$$

$$\alpha = \frac{1}{2}, \hat{x}_A = \frac{5}{6}, \hat{x}_B = \frac{1}{6}$$

- ▶ Without coupons, prices would be equal to 1 in both periods and the intertemporal profit would be 1.
- Prices with coupon are $p_A^2 c_A = \frac{2}{3} < 1$
- ► Firms are better off with coupons, it enables them to relax competition and all consumers (except loyal costumers in t=2 who pay $\frac{2}{3}$) pay a higher price. ◆ロ → ◆部 → ◆ 重 → ◆ 重 ★ 夕 ♀ ●

Exercice 2: Poaching

Assumptions

- ▶ Two firms $k \in \{A, B\}$ are located at the extremes of a Hotelling line and compete during two periods, $t \in \{1, 2\}$. Prices are denoted p_k^t .
- ► Consumers with a reservation price *r* uniformly distributed along the line, incur a linear transportation cost −*x* to travel distance *x*
- ▶ No production cost.

Questions

1. Determine the equilibrium of the two period game.

Références

Bulow, J., 1982, "Durable-Goods Monopolists", *Journal of Political Economy*, Vol. 90, No. 2, pp. 314-332.

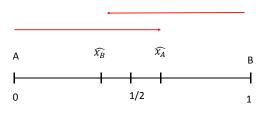
Caminal, R., and C. Matutes, (1990), "Endogenous Switching Costs in a duopoly Model", *International Journal of Industrial Organization*, 8, pp 353-373.

Narasimhan, C., 1988, "Competitive Promotional Strategies", *The Journal of Business*, Vol. 61, pp.427-450.

Varian, H., 1980, "A Model of Sales", *The American Economic Review*, Vol. 70, No. 4, pp. 651-659.

Initial Condition

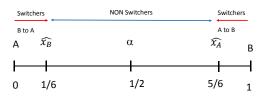
- ▶ We check here that, in equilibrium, the initial condition is met, i.e. that all old consumers who have bought from *A* buy again from *A* in *t* = 2.
- ▶ Formally we had assume that $\hat{x}_A = \frac{1}{2}(1+z) > \alpha = \frac{1}{2}$.



Consumers do not switch.

Initial Condition

- ▶ We check here that, in equilibrium, the initial condition is met, i.e. that all old consumers who have bought from A buy again from A in t = 2.
- ▶ Formally we had assume that $\hat{x}_A = \frac{1}{2}(1+z) > \alpha = \frac{1}{2}$.



Consumers that do not switch.

30/30