Firms' Strategies and Markets Entry

Claire Chambolle

October 06, 2021

・ロト・日本・日本・日本・日本・日本

Introduction

Entrant's strategy: "Judo economics"

- A case study
- Exercice

Introduction

- Entrant's strategy: "Judo economics"
 - A case study
 - Exercice
- Incumbent's strategies vis-à-vis entry
 - Entry deterred
 - Entry Accomodated

・ロト・日本・日本・日本・日本・日本

Entrant's strategy: Judo Economics

In the art of "judo", a combatant uses the weight and strenght of his opponent to his own advantage.

- Rule-based judo strategy
- Value-based judo strategy

<ロ> <回> <回> < 三> < 三> < 三> < 三> のへで

Entrant's strategy: Judo Economics

In the art of "judo", a combatant uses the weight and strenght of his opponent to his own advantage.

- Rule-based judo strategy
- Value-based judo strategy
- Case study: Four short stories about small firms challenging large incumbent firms!
 - 1. Softsoap on the liquid soap market
 - 2. Red Bull on the energy drinks market
 - 3. UK supermarket chains on the gazoline retail
 - 4. Freeserve against AOL.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ → のへで

• Consumers have an inelastic demand of size D if $p \le p_{max}$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めんら

• Consumers have an inelastic demand of size *D* if $p \le p_{max}$.

An incumbent *I* has an installed capacity *D* and no production cost.

◆□▶◆□▶◆臣▶◆臣▶ 臣 のへで

- Consumers have an inelastic demand of size *D* if $p \le p_{max}$.
- ▶ An incumbent *I* has an installed capacity *D* and no production cost.
- An entrant *E* has a variable cost $c_E > 0$

・ロト・日本・日本・日本・日本・日本

- Consumers have an inelastic demand of size *D* if $p \le p_{max}$.
- An incumbent *I* has an installed capacity *D* and no production cost.
- An entrant *E* has a variable cost $c_E > 0$
- 1. Determine the price and profit of a monopoly I.

・ロト・日本・日本・日本・日本・日本

- Consumers have an inelastic demand of size *D* if $p \le p_{max}$.
- An incumbent *I* has an installed capacity *D* and no production cost.
- An entrant *E* has a variable cost $c_E > 0$
- 1. Determine the price and profit of a monopoly I.

A monopolist I sets a price p_{max} and its profit is $p_{max}D$.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 = ∽ 9 Q ()~.

2. If *E* chooses to enter the market, he chooses both its capacity K_E and its price p_E . If *E* enters, *I* observes K_E and p_E and adapts its price denoted p_I .

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 = ∽ 9 Q ()~.

- 2. If *E* chooses to enter the market, he chooses both its capacity K_E and its price p_E . If *E* enters, *I* observes K_E and p_E and adapts its price denoted p_I .
- a. What is the demand for each firm with respect to p_E , p_I and K_E ?

◆□▶◆□▶◆臣▶◆臣▶ 臣 のへで

- 2. If *E* chooses to enter the market, he chooses both its capacity K_E and its price p_E . If *E* enters, *I* observes K_E and p_E and adapts its price denoted p_I .
- a. What is the demand for each firm with respect to p_E , p_I and K_E ?

• If $p_I > p_E$ the firm $E D_E = K_E$ and $D_I = D - K_E$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣・ のへぐ

- 2. If *E* chooses to enter the market, he chooses both its capacity K_E and its price p_E . If *E* enters, *I* observes K_E and p_E and adapts its price denoted p_I .
- a. What is the demand for each firm with respect to p_E , p_I and K_E ?
 - If $p_I > p_E$ the firm $E D_E = K_E$ and $D_I = D K_E$
 - If $p_I \leq p_E$, the firm I has a demand $D_I = D$ and $D_E = 0$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣・ のへぐ

- 2. If *E* chooses to enter the market, he chooses both its capacity K_E and its price p_E . If *E* enters, *I* observes K_E and p_E and adapts its price denoted p_I .
- a. What is the demand for each firm with respect to p_E , p_I and K_E ?

If
$$p_l > p_E$$
 the firm $E D_E = K_E$ and $D_l = D - K_E$

- If $p_I \leq p_E$, the firm I has a demand $D_I = D$ and $D_E = 0$
- b. Given (K_E, p_E) , determine the best pricing strategy of firm I, denoted $p_I(K_E, p_E)$.

- 2. If *E* chooses to enter the market, he chooses both its capacity K_E and its price p_E . If *E* enters, *I* observes K_E and p_E and adapts its price denoted p_I .
- a. What is the demand for each firm with respect to p_E , p_I and K_E ?

If
$$p_l > p_E$$
 the firm $E D_E = K_E$ and $D_l = D - K_E$

- If $p_I \leq p_E$, the firm I has a demand $D_I = D$ and $D_E = 0$
- b. Given (K_E, p_E) , determine the best pricing strategy of firm I, denoted $p_I(K_E, p_E)$.
 - If $p_l > p_E$ the firm $E D_E = K_E$ and $D_l = D K_E$.

- 2. If *E* chooses to enter the market, he chooses both its capacity K_E and its price p_E . If *E* enters, *I* observes K_E and p_E and adapts its price denoted p_I .
- a. What is the demand for each firm with respect to p_E , p_I and K_E ?

If
$$p_l > p_E$$
 the firm $E D_E = K_E$ and $D_l = D - K_E$

- If $p_I \leq p_E$, the firm I has a demand $D_I = D$ and $D_E = 0$
- b. Given (K_E, p_E) , determine the best pricing strategy of firm I, denoted $p_I(K_E, p_E)$.
 - If $p_l > p_E$ the firm $E D_E = K_E$ and $D_l = D K_E$.
 - If $p_I \leq p_E$, the firm I has a demand $D_I = D$ and $D_E = 0$.

- 2. If *E* chooses to enter the market, he chooses both its capacity K_E and its price p_E . If *E* enters, *I* observes K_E and p_E and adapts its price denoted p_I .
- a. What is the demand for each firm with respect to p_E , p_I and K_E ?

If
$$p_l > p_E$$
 the firm $E D_E = K_E$ and $D_l = D - K_E$

- If $p_I \leq p_E$, the firm I has a demand $D_I = D$ and $D_E = 0$
- b. Given (K_E, p_E) , determine the best pricing strategy of firm I, denoted $p_I(K_E, p_E)$.
 - If $p_l > p_E$ the firm $E D_E = K_E$ and $D_l = D K_E$.
 - If $p_l \le p_E$, the firm I has a demand $D_l = D$ and $D_E = 0$. Given (K_E, p_E) , the firm I can sell at p_{max} and obtain a profit

$$p_{max}(D-K_E)$$

◆□▶◆□▶◆目▶◆目▶ 目 のへで

- 2. If *E* chooses to enter the market, he chooses both its capacity K_E and its price p_E . If *E* enters, *I* observes K_E and p_E and adapts its price denoted p_I .
- a. What is the demand for each firm with respect to p_E , p_I and K_E ?

If
$$p_l > p_E$$
 the firm $E D_E = K_E$ and $D_l = D - K_E$

- If $p_I \leq p_E$, the firm I has a demand $D_I = D$ and $D_E = 0$
- b. Given (K_E, p_E) , determine the best pricing strategy of firm I, denoted $p_I(K_E, p_E)$.
 - If $p_l > p_E$ the firm $E D_E = K_E$ and $D_l = D K_E$.
 - If $p_l \le p_E$, the firm I has a demand $D_l = D$ and $D_E = 0$. Given (K_E, p_E) , the firm I can sell at p_{max} and obtain a profit

$$p_{max}(D-K_E)$$

◆□▶◆□▼◆目▼◆目▼ 目 のへの

5/40

The firm can also sell at p_E and obtain $p_E D$.

- 2. If *E* chooses to enter the market, he chooses both its capacity K_E and its price p_E . If *E* enters, *I* observes K_E and p_E and adapts its price denoted p_I .
- a. What is the demand for each firm with respect to p_E , p_I and K_E ?

If
$$p_l > p_E$$
 the firm $E D_E = K_E$ and $D_l = D - K_E$

- If $p_I \leq p_E$, the firm I has a demand $D_I = D$ and $D_E = 0$
- b. Given (K_E, p_E) , determine the best pricing strategy of firm I, denoted $p_I(K_E, p_E)$.
 - If $p_l > p_E$ the firm $E D_E = K_E$ and $D_l = D K_E$.
 - If $p_I \le p_E$, the firm I has a demand $D_I = D$ and $D_E = 0$. Given (K_E, p_E) , the firm I can sell at p_{max} and obtain a profit

$$p_{max}(D-K_E)$$

The firm can also sell at p_E and obtain $p_E D$. I chooses the price that maximizes its profit i.e.: p_{max} if $p_E \leq \frac{p_{max}(D-K_E)}{D}$ and p_E otherwise.

c. Given the reaction of firm *I*, determine the optimal decisions (K_E, p_E) of the entrant. What is the effect of c_E on these decisions?

◆□▶◆□▶◆臣▶◆臣▶ 臣 のへで

- c. Given the reaction of firm *I*, determine the optimal decisions (K_E, p_E) of the entrant. What is the effect of c_E on these decisions?
- ▶ The firm *E* can sell if and only if I chooses p_{max} . Therefore, *E* must set $p_E = \frac{(D K_E)p_{max}}{D}$, that is a sufficiently low price and maximises

$$K_E(rac{D-K_E}{D}p_{max}-c_E)$$

- c. Given the reaction of firm *I*, determine the optimal decisions (K_E, p_E) of the entrant. What is the effect of c_E on these decisions?
- ▶ The firm *E* can sell if and only if I chooses p_{max} . Therefore, *E* must set $p_E = \frac{(D-K_E)p_{max}}{D}$, that is a sufficiently low price and maximises

$$K_E(rac{D-K_E}{D}p_{max}-c_E)$$

which gives $K_E^* = \frac{D}{2}(1 - \frac{c_E}{p_{max}})$ and $p_E^* = \frac{p_{max} + c_E}{2}$.

(ロ)

- c. Given the reaction of firm *I*, determine the optimal decisions (K_E, p_E) of the entrant. What is the effect of c_E on these decisions?
- ▶ The firm *E* can sell if and only if I chooses p_{max} . Therefore, *E* must set $p_E = \frac{(D K_E)p_{max}}{D}$, that is a sufficiently low price and maximises

$$K_E(rac{D-K_E}{D}p_{max}-c_E)$$

which gives $\mathcal{K}_{E}^{*} = \frac{D}{2}(1 - \frac{c_{E}}{p_{max}})$ and $p_{E}^{*} = \frac{p_{max} + c_{E}}{2}$.

▶ If $c_E = 0$, i.e; the entrant is as efficient as the incumbent, $K_E^* = \frac{D}{2}$, the two firms share the market and the price is $\frac{p_{max}}{2}$.

◆□▶◆舂▶◆≧▶◆≧▶ ≧ めへで

$$\Pi_I = p_{max}(D - K_E^*) = \frac{D(p_{max} + c_E)}{2}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めんの

$$\Pi_I = p_{max}(D - K_E^*) = \frac{D(p_{max} + c_E)}{2}$$
$$\Pi_E = \frac{D}{p_{max}} \frac{(p_{max} - c_E)^2}{4}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めんの

$$\Pi_I = p_{max}(D - K_E^*) = \frac{D(p_{max} + c_E)}{2}$$
$$\Pi_E = \frac{D}{p_{max}} \frac{(p_{max} - c_E)^2}{4}$$

A less efficient entrant can enter the market and realize a positive profit when facing an incumbent more efficient and with more capacity. The entrant chooses a relatively low size to make it very costly for the incumbent to go into a price war.

e. What is the equilibrium if the incumbent can set a personalized price for each customer?

<ロ> <回> <回> < 三> < 三> < 三> < 三> のへで

$$\Pi_I = p_{max}(D - K_E^*) = \frac{D(p_{max} + c_E)}{2}$$
$$\Pi_E = \frac{D}{p_{max}} \frac{(p_{max} - c_E)^2}{4}$$

A less efficient entrant can enter the market and realize a positive profit when facing an incumbent more efficient and with more capacity. The entrant chooses a relatively low size to make it very costly for the incumbent to go into a price war.

e. What is the equilibrium if the incumbent can set a personalized price for each customer?

With personnalized prices, I would sell at $p_E - \epsilon$ at population K_E but at P_{max} to other consumers and entry would be always deterred.

A taxonomy of incumbent's investments strategies The chain store paradox : A Reputation strategy Contracts to deter entry

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

8/40

Strategic Incumbent and entry

1. A taxonomy of incumbent's investments strategies

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

8/40

- 1. A taxonomy of incumbent's investments strategies
 - "Top-dog strategy": investment in capacity

▲□▶▲□▶▲□▶▲□▶ □ のくで

8/40

- 1. A taxonomy of incumbent's investments strategies
 - "Top-dog strategy": investment in capacity
 - "Lean and hungry look strategy": an innovation model

▲□▶▲□▶▲□▶▲□▶ □ のくで

8/40

- 1. A taxonomy of incumbent's investments strategies
 - "Top-dog strategy": investment in capacity
 - "Lean and hungry look strategy": an innovation model
- 2. The chain store paradox : a reputation game

▲□▶▲□▶▲□▶▲□▶ □ のくで

8/40

- 1. A taxonomy of incumbent's investments strategies
 - "Top-dog strategy": investment in capacity
 - "Lean and hungry look strategy": an innovation model
- 2. The chain store paradox : a reputation game
- 3. Exclusive dealing: a contracting strategy

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

9/40

A taxonomy of incumbent's investments strategies

► In stage 1, the incumbent chooses the level of some irreversible investment K₁.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

A taxonomy of incumbent's investments strategies

- In stage 1, the incumbent chooses the level of some irreversible investment K₁.
- ▶ In stage 2, after observing K_1 , E decides to enter or not. Products market decisions are taken, denoted σ_1 and σ_2 (price or quantity).
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ → のへで

A taxonomy of incumbent's investments strategies

- In stage 1, the incumbent chooses the level of some irreversible investment K₁.
- In stage 2, after observing K₁, E decides to enter or not. Products market decisions are taken, denoted σ₁ and σ₂ (price or quantity).
 - If E enters, σ₁ and σ₂ are chosen simultaneously, and profits are denoted π₁(K₁, σ₁, σ₂) and π₂(K₁, σ₁, σ₂).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ → のへで

A taxonomy of incumbent's investments strategies

- In stage 1, the incumbent chooses the level of some irreversible investment K₁.
- In stage 2, after observing K₁, E decides to enter or not. Products market decisions are taken, denoted σ₁ and σ₂ (price or quantity).
 - If E enters, σ₁ and σ₂ are chosen simultaneously, and profits are denoted π₁(K₁, σ₁, σ₂) and π₂(K₁, σ₁, σ₂).

We assume that $\pi_2(K_1, \sigma_1, \sigma_2)$ includes entry cost if any.

(ロ)(同)(モニ)(モ)(モ) モージス()

A taxonomy of incumbent's investments strategies

- In stage 1, the incumbent chooses the level of some irreversible investment K₁.
- In stage 2, after observing K₁, E decides to enter or not. Products market decisions are taken, denoted σ₁ and σ₂ (price or quantity).
 - If E enters, σ₁ and σ₂ are chosen simultaneously, and profits are denoted π₁(K₁, σ₁, σ₂) and π₂(K₁, σ₁, σ₂).

We assume that $\pi_2(K_1, \sigma_1, \sigma_2)$ includes entry cost if any.

We assume that there exists a unique Nash equilibrium of this competition stage that results in $(\sigma_1^*(K_1), \sigma_2^*(K_1))$.

◆□▶◆□▶◆臣▶◆臣▶ 臣 のへで

A taxonomy of incumbent's investments strategies

- In stage 1, the incumbent chooses the level of some irreversible investment K₁.
- In stage 2, after observing K₁, E decides to enter or not. Products market decisions are taken, denoted σ₁ and σ₂ (price or quantity).
 - If E enters, σ₁ and σ₂ are chosen simultaneously, and profits are denoted π₁(K₁, σ₁, σ₂) and π₂(K₁, σ₁, σ₂).

We assume that $\pi_2(K_1, \sigma_1, \sigma_2)$ includes entry cost if any.

We assume that there exists a unique Nash equilibrium of this competition stage that results in $(\sigma_1^*(K_1), \sigma_2^*(K_1))$.

• If E does not enter, the incumbent obtains $\pi_1^m(K_1, \sigma_1^m(K_1))$.

9/40

A taxonomy of incumbent's investments strategies

- In stage 1, the incumbent chooses the level of some irreversible investment K₁.
- In stage 2, after observing K₁, E decides to enter or not. Products market decisions are taken, denoted σ₁ and σ₂ (price or quantity).
 - If E enters, σ₁ and σ₂ are chosen simultaneously, and profits are denoted π₁(K₁, σ₁, σ₂) and π₂(K₁, σ₁, σ₂).

We assume that $\pi_2(K_1, \sigma_1, \sigma_2)$ includes entry cost if any.

We assume that there exists a unique Nash equilibrium of this competition stage that results in $(\sigma_1^*(K_1), \sigma_2^*(K_1))$.

- If E does not enter, the incumbent obtains $\pi_1^m(K_1, \sigma_1^m(K_1))$.
- Two strategies: Entry deterrence and Accomodation.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の久()

10/40

Entry deterrence

 \blacktriangleright K_1 is set at a level sufficient to deter entry i.e. such that:

 $\pi_2(K_1, \sigma_1^*(K_1), \sigma_2^*(K_1)) = 0$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ◆ □ > ◆ ○ ◆ ○ ◆

10/40

Entry deterrence

• K_1 is set at a level sufficient to deter entry i.e. such that:

$$\pi_2(K_1, \sigma_1^*(K_1), \sigma_2^*(K_1)) = 0$$

► To see how K_1 must be distorted, we totally differentiate π_2 with respect to K_1 :

10/40

Entry deterrence

• K_1 is set at a level sufficient to deter entry i.e. such that:

$$\pi_2(K_1, \sigma_1^*(K_1), \sigma_2^*(K_1)) = 0$$

To see how K₁ must be distorted, we totally differentiate π₂ with respect to K₁:

▲□▶▲□▶▲□▶▲□▶ □ のく⊙

10/40

Entry deterrence

▶ K₁ is set at a level sufficient to deter entry i.e. such that:

$$\pi_2(K_1, \sigma_1^*(K_1), \sigma_2^*(K_1)) = 0$$

To see how K₁ must be distorted, we totally differentiate π₂ with respect to K₁:

▶ Sign of direct effects :advertising informative $\left(\frac{\partial \pi_2}{\partial K_1} > 0\right)$ or persuasive $\left(\frac{\partial \pi_2}{\partial K_1} < 0\right)$, investment in capacity $\left(\frac{\partial \pi_2}{\partial K_1} = 0\right)$

▲□▶▲□▶▲□▶▲□▶ □ のく⊙

10/40

Entry deterrence

▶ K₁ is set at a level sufficient to deter entry i.e. such that:

$$\pi_2(K_1, \sigma_1^*(K_1), \sigma_2^*(K_1)) = 0$$

To see how K₁ must be distorted, we totally differentiate π₂ with respect to K₁:

- ▶ Sign of direct effects :advertising informative $\left(\frac{\partial \pi_2}{\partial K_1} > 0\right)$ or persuasive $\left(\frac{\partial \pi_2}{\partial K_1} < 0\right)$, investment in capacity $\left(\frac{\partial \pi_2}{\partial K_1} = 0\right)$
- Strategic effect : given K₁ it is a commitment for the incumbent to be tough or weak in its decision of σ₁(K₁)

10/40

Entry deterrence

▶ K₁ is set at a level sufficient to deter entry i.e. such that:

$$\pi_2(K_1, \sigma_1^*(K_1), \sigma_2^*(K_1)) = 0$$

To see how K₁ must be distorted, we totally differentiate π₂ with respect to K₁:

- ▶ Sign of direct effects :advertising informative $\left(\frac{\partial \pi_2}{\partial K_1} > 0\right)$ or persuasive $\left(\frac{\partial \pi_2}{\partial K_1} < 0\right)$, investment in capacity $\left(\frac{\partial \pi_2}{\partial K_1} = 0\right)$
- Strategic effect : given K₁ it is a commitment for the incumbent to be tough or weak in its decision of σ₁(K₁)
- ► If $\frac{d\pi_2}{dK_1} < 0$, investment makes the incumbent tough: "top dog"; If $\frac{d\pi_2}{dK_1} > 0$, investment makes the incumbent soft: "lean and hungry look".

11/40

Entry accomodation

• K_1 is set at its best accomodating level, i.e. :

 $\max_{K_1} \pi_1(K_1, \sigma_1^*(K_1), \sigma_2^*(K_1))$

(ロ) (同) (三) (三) (三) (○) (○)

11/40

Entry accomodation

• K_1 is set at its best accomodating level, i.e. :

$$\max_{K_1} \pi_1(K_1, \sigma_1^*(K_1), \sigma_2^*(K_1))$$

To see how K₁ must be distorted, we totally differentiate π₁ with respect to K₁:

11/40

Entry accomodation

• K_1 is set at its best accomodating level, i.e. :

$$\max_{K_1} \pi_1(K_1, \sigma_1^*(K_1), \sigma_2^*(K_1))$$

To see how K₁ must be distorted, we totally differentiate π₁ with respect to K₁:

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○ ○

11/40

Entry accomodation

• K_1 is set at its best accomodating level, i.e. :

$$\max_{K_1} \pi_1(K_1, \sigma_1^*(K_1), \sigma_2^*(K_1))$$

To see how K₁ must be distorted, we totally differentiate π₁ with respect to K₁:

The direct effect is the "profit maximizing effect" with no effect on firm 2.

Entry accomodation

• K_1 is set at its best accomodating level, i.e. :

$$\max_{K_1} \pi_1(K_1, \sigma_1^*(K_1), \sigma_2^*(K_1))$$

To see how K₁ must be distorted, we totally differentiate π₁ with respect to K₁:

- The direct effect is the "profit maximizing effect" with no effect on firm 2.
- The strategic effect:

$$Sign(\frac{\partial \pi_1}{\partial \sigma_2} \frac{\partial \sigma_2^*(K_1)}{\partial K_1}) = Sign(\frac{\partial \pi_2}{\partial \sigma_1} \frac{\partial \sigma_1^*(K_1)}{\partial K_1}) \times Sign(\frac{d\sigma_2^*}{d\sigma_1})$$

11/40

▲□▶▲□▶▲□▶▲□▶ □ のく⊙

12/40

Table: TAXONOMY

Strategic substitutes	(D) Top Dog	(D) Lean & Hungry
$\frac{d\sigma_2^*}{d\sigma_1} < 0$	(A) Top Dog	(A) Lean & Hungry
Strategic complements	(D) Top Dog	(D) Lean & Hungry
$rac{d\sigma_2^*}{d\sigma_1}>0$	(A) Puppy Dog	(A) Fat Cat

- Top Dog: Overinvestment;
- Lean & Hungry: Underinvestment;
- Puppy Dog: Overinvestment for (D) and Underinvestment for (A);
- ▶ Fat Cat: Underinvestment for (D) and Overinvestment for (A).

A taxonomy of incumbent's investments strategies The chain store paradox : A Reputation strategy Contracts to deter entry

A taxonomy of incumbent's investments strategies The chain store paradox : A Reputation strategy Contracts to deter entry

・ロト・(型ト・ミト・ミト・ミークへや)

13/40

A top dog example: Investment in capacity

ln stage 1, an incumbent firm 1 sets its capacity \bar{q}_1 .

13/40

- ln stage 1, an incumbent firm 1 sets its capacity \bar{q}_1 .
- ▶ In stage 2, the entrant 2 decides to enter or not. In case of entry the two firms set additional capacity $\Delta \bar{q}_1$ and $\Delta \bar{q}_2$ respectively and produce at most $\bar{q}_1 + \Delta \bar{q}_1$ for the incumbent and $\Delta \bar{q}_2$ for the entrant.

13/40

- ln stage 1, an incumbent firm 1 sets its capacity \bar{q}_1 .
- ▶ In stage 2, the entrant 2 decides to enter or not. In case of entry the two firms set additional capacity $\Delta \bar{q}_1$ and $\Delta \bar{q}_2$ respectively and produce at most $\bar{q}_1 + \Delta \bar{q}_1$ for the incumbent and $\Delta \bar{q}_2$ for the entrant.
- Products are homogeneous and the inverse demand function is $P = 1 q_1 q_2$.

13/40

- ln stage 1, an incumbent firm 1 sets its capacity \bar{q}_1 .
- ▶ In stage 2, the entrant 2 decides to enter or not. In case of entry the two firms set additional capacity $\Delta \bar{q}_1$ and $\Delta \bar{q}_2$ respectively and produce at most $\bar{q}_1 + \Delta \bar{q}_1$ for the incumbent and $\Delta \bar{q}_2$ for the entrant.
- Products are homogeneous and the inverse demand function is $P = 1 q_1 q_2$.
- Entry cost : e

13/40

- ln stage 1, an incumbent firm 1 sets its capacity \bar{q}_1 .
- ▶ In stage 2, the entrant 2 decides to enter or not. In case of entry the two firms set additional capacity $\Delta \bar{q}_1$ and $\Delta \bar{q}_2$ respectively and produce at most $\bar{q}_1 + \Delta \bar{q}_1$ for the incumbent and $\Delta \bar{q}_2$ for the entrant.
- Products are homogeneous and the inverse demand function is $P = 1 q_1 q_2$.
- Entry cost : e
- k is the marginal cost of capacity.

13/40

- ln stage 1, an incumbent firm 1 sets its capacity \bar{q}_1 .
- ▶ In stage 2, the entrant 2 decides to enter or not. In case of entry the two firms set additional capacity $\Delta \bar{q}_1$ and $\Delta \bar{q}_2$ respectively and produce at most $\bar{q}_1 + \Delta \bar{q}_1$ for the incumbent and $\Delta \bar{q}_2$ for the entrant.
- Products are homogeneous and the inverse demand function is $P = 1 q_1 q_2$.
- Entry cost : e
- k is the marginal cost of capacity.
- c the marginal cost of production.

A taxonomy of incumbent's investments strategies The chain store paradox : A Reputation strategy Contracts to deter entry

Assume that 2 has entered. The incumbent's profit is:

$$\pi_1=(1-q_1-q_2-c)q_1-k\Deltaar{q_1}$$

Assume that 2 has entered. The incumbent's profit is:

$$\pi_1=(1-q_1-q_2-c)q_1-k\Deltaar{q_1}$$

Maximizing this function with respect to q_1 it follows that the best reaction function is:

$$q_1(q_2) = egin{cases} rac{1}{2}(1-q_2-c-k) & ext{ for } q_1 > ar{q}_1, \ rac{1}{2}(1-q_2-c) & ext{ for } q_1 \leq ar{q}_1 \end{cases}$$

Assume that 2 has entered. The incumbent's profit is:

$$\pi_1=(1-q_1-q_2-c)q_1-k\Deltaar{q_1}$$

Maximizing this function with respect to q_1 it follows that the best reaction function is:

A taxonomy of incumbent's investments strategies The chain store paradox : A Reputation strategy Contracts to deter entry

The entrant's profit is:

$$\pi_2=(1-q_1-q_2-c)q_2-k\Deltaar{q_2}-e$$

The entrant's profit is:

$$\pi_2=(1-q_1-q_2-c)q_2-k\Deltaar{q_2}-e$$

Maximizing this function w.r.t. q_2 , the best reaction function is:

$$q_2(q_1) = egin{cases} rac{1}{2}(1-q_1-c-k) & ext{ for } q_1 < ilde q_1, \ 0 & ext{ for } q_1 \geq ilde q_1 \end{cases}$$

$$ilde{q_1} = 1 - c - k - 2\sqrt{e} \Leftrightarrow \pi_2(q_2(q_1), q_1) = rac{1}{4}(1 - q_1 - c - k)^2 - e = 0$$

The entrant's profit is:

$$\pi_2=(1-q_1-q_2-c)q_2-k\Deltaar{q_2}-e$$

Maximizing this function w.r.t. q_2 , the best reaction function is:

$$q_2(q_1) = egin{cases} rac{1}{2}(1-q_1-c-k) & ext{ for } q_1 < ilde{q_1}, \ 0 & ext{ for } q_1 \geq ilde{q_1} \end{cases}$$

$$\tilde{q_1} = 1 - c - k - 2\sqrt{e} \Leftrightarrow \pi_2(q_2(q_1), q_1) = \frac{1}{4}(1 - q_1 - c - k)^2 - e = 0$$

4 cases to consider

1. Inevitable entry: $\tilde{q}_1 > q_1^V \Rightarrow e < e^- = \frac{1}{9}(1 - c - 2k)^2$. q_1^V corresponds to a Nash equilibrium between the entrant 2 and an unconstrained firm 1.

• if
$$\bar{q}_1 = q_1^V \Rightarrow \pi_1 = \frac{1}{9}(1 - c + k)(1 - c - 2k)$$

• if $\bar{q}_1 = q_1^C \Rightarrow \pi_1^C = \frac{1}{9}(1 - c - k)^2$.

4 cases to consider

2. Blockaded entry

$$q_1^M = \frac{1}{2}(1 - c - k) \text{ and } q_1^M > \tilde{q}_1 \Rightarrow e > e^+ = \frac{1}{16}(1 - c - k)^2$$

 \blacktriangleright Then $\bar{q}_1 = q_1^M \Rightarrow \pi_1^M = \frac{1}{4}(1 - c - k)^2$

4 cases to consider If $q_1^M < \tilde{q}_1 < q_1^V \Leftrightarrow e^- < e < e^+$

- 3. Deterred entry $\bar{q}_1 = \tilde{q}_1$ Commitment from 1 to be on its highest reaction function \Rightarrow credible that $q_1 = \tilde{q}_1$ and no entry.
- 4. Accomodated entry
 - $\bar{q}_1 = q_1^S = \frac{1}{2}(1 c k) = q_1^M < \tilde{q}_1$. In the competition stage, 1 is on the high reaction function only if $q_1 < q_1^M < q_1^V$.

Entrant's strategy: Judo Economics Strategic Incumbent and entry A taxonomy of incumbent's investments strategies The chain store paradox : A Reputation strategy Contracts to deter entry

<ロ>< 回>< 回>< 回>< 目>< 目>< 目>< 目>< 目>< 目>< 19/40

If $q_1^M < ilde q_1 < q_1^V \Leftrightarrow e^- < e < e^+$

Entrant's strategy: Judo Economics Strategic Incumbent and entry A taxonomy of incumbent's investments strategies The chain store paradox : A Reputation strategy Contracts to deter entry

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ○ 三 · の へ ⊙ 19/40

If $q_1^M < ilde q_1 < q_1^V \Leftrightarrow e^- < e < e^+$

The profit obtained in case of accomodation is:

$$\max_{q_1^s} \pi_1(q_1^s, q_2(q_1^s)) = \frac{1}{2}(1 - c - k - q_1^S)q_1^S \Rightarrow \pi_1^A = \frac{1}{8}(1 - c - k)^2$$

Entrant's strategy: Judo Economics Strategic Incumbent and entry

If $q_1^M < ilde q_1 < q_1^V \Leftrightarrow e^- < e < e^+$

The profit obtained in case of accomodation is:

$$\max_{q_1^s} \pi_1(q_1^s,q_2(q_1^s)) = rac{1}{2}(1-c-k-q_1^S)q_1^S \Rightarrow \pi_1^A = rac{1}{8}(1-c-k)^2$$

▶ To deter entry, the incumbent must install a larger capacity \tilde{q}_1 and its profit is:

$$\pi_1^D = (1 - c - k - \tilde{q}_1)\tilde{q}_1 = 2\sqrt{e}(1 - c - k - 2\sqrt{e})$$
Entrant's strategy: Judo Economics Strategic Incumbent and entry

If $q_1^M < ilde q_1 < q_1^V \Leftrightarrow e^- < e < e^+$

The profit obtained in case of accomodation is:

$$\max_{q_1^s} \pi_1(q_1^s,q_2(q_1^s)) = rac{1}{2}(1-c-k-q_1^S)q_1^S \Rightarrow \pi_1^A = rac{1}{8}(1-c-k)^2$$

To deter entry, the incumbent must install a larger capacity q₁ and its profit is:

$$\pi_1^D = (1 - c - k - \tilde{q}_1)\tilde{q}_1 = 2\sqrt{e}(1 - c - k - 2\sqrt{e})$$

It is possible to show that $\pi_1^D > \pi_1^A$ if $e > e^* = \frac{(2-\sqrt{2})^2(1-c-k)^2}{64}$.

(ロ) (同) (三) (三) (三) (○) (○)

20/40

Remember

This investment capacity model illustrates the TOP DOG strategy for Deterrence:

• Deterrence $\rightarrow q_1 = \tilde{q}_1$ which corresponds to a capacity expansion above the monopoly level.

(ロ) (同) (三) (三) (三) (○) (○)

20/40

Remember

This investment capacity model illustrates the TOP DOG strategy for Deterrence:

- Deterrence $\rightarrow q_1 = \tilde{q}_1$ which corresponds to a capacity expansion above the monopoly level.
- Accomodation $\rightarrow q_1^S = q_1^M$ which corresponds to a capacity expansion above the competition level $(q_1^C = \frac{1-c-k}{3})$.

(ロ)

21/40

Lean and Hungry look: An innovation model

Assumptions

Period 1: Firm 1 can make an investment K₁ to reduce its marginal cost c(K₁) and obtain the corresponding gross profit π^M(c(K₁)) which strictly increases in K₁ in period 1.

21/40

Lean and Hungry look: An innovation model

Assumptions

- Period 1: Firm 1 can make an investment K₁ to reduce its marginal cost c(K₁) and obtain the corresponding gross profit π^M(c(K₁)) which strictly increases in K₁ in period 1.
- Period 2 Firm 2 may enter at a fixed cost F. When firm 2 enters, 1 and 2 compete in R&D:

• To innovate with probability ρ_i costs $\rho_i^2/2$.

Innovation is drastic and leads to a marginal cost c.

(ロ) (同) (三) (三) (三) (○) (○)

21/40

Lean and Hungry look: An innovation model

Assumptions

- Period 1: Firm 1 can make an investment K₁ to reduce its marginal cost c(K₁) and obtain the corresponding gross profit π^M(c(K₁)) which strictly increases in K₁ in period 1.
- Period 2 Firm 2 may enter at a fixed cost F. When firm 2 enters, 1 and 2 compete in R&D:
 - To innovate with probability ρ_i costs $\rho_i^2/2$.

Innovation is drastic and leads to a marginal cost c.

Table: Gains in period2

Innovation probabilities	ρ_2	$(1- ho_2)$
ρ_1	(0,0)	$(\pi^{M}(c), 0)$
$(1 - \rho_1)$	$(0, \pi^{M}(c))$	$(\pi^{M}(c(K_{1}), 0))$

Entrant's strategy: Judo Economics Strategic Incumbent and entry Contracts to deter entry

A taxonomy of incumbent's investments strategies The chain store paradox : A Reputation strategy Contracts to deter entry

Period 2: Firms 1 and 2 choose their R&D levels ρ_1 and ρ_2 to maximize their expected profit:

$$\begin{aligned} \pi_1 &= \rho_1(1-\rho_2)\pi^M(c) + (1-\rho_1)(1-\rho_2)\pi^M(c(K_1)) - \rho_1^2/2, \\ \pi_2 &= \rho_2(1-\rho_1)\pi^M(c) - \rho_2^2/2 \end{aligned}$$

Entrant's strategy: Judo Economics Strategic Incumbent and entry Contracts to deter entry

Period 2: Firms 1 and 2 choose their R&D levels ρ_1 and ρ_2 to maximize their expected profit:

$$\begin{aligned} \pi_1 &= \rho_1(1-\rho_2)\pi^M(c) + (1-\rho_1)(1-\rho_2)\pi^M(c(K_1)) - \rho_1^2/2, \\ \pi_2 &= \rho_2(1-\rho_1)\pi^M(c) - \rho_2^2/2 \end{aligned}$$

FOCS are:

$$\begin{cases} (1 - \rho_2^*)(\pi^M(c) - \pi^M(c(K_1)) = \rho_1^*, \\ (1 - \rho_1^*)\pi^M(c) = \rho_2^* \end{cases}$$

22/40

Period 2: Firms 1 and 2 choose their R&D levels ρ_1 and ρ_2 to maximize their expected profit:

$$\begin{aligned} \pi_1 &= \rho_1(1-\rho_2)\pi^M(c) + (1-\rho_1)(1-\rho_2)\pi^M(c(K_1)) - \rho_1^2/2, \\ \pi_2 &= \rho_2(1-\rho_1)\pi^M(c) - \rho_2^2/2 \end{aligned}$$

FOCS are:

$$\begin{cases} (1 - \rho_2^*)(\pi^M(c) - \pi^M(c(K_1)) = \rho_1^*, \\ (1 - \rho_1^*)\pi^M(c) = \rho_2^* \end{cases}$$

The equilibrium investments ρ_1^* and ρ_2^* that solve the above system are such that $\frac{\partial \rho_1^*}{\partial K_1} < 0$ and $\frac{\partial \rho_2^*}{\partial K_1} > 0$. For **Deterrence**

$$rac{d\pi_2(K_1,
ho_1^*,
ho_2^*)}{dK_1} = -
ho_2^*\pi^M(c)rac{\partial
ho_1^*}{\partial K_1} > 0$$

The deterrence strategy consists in reducing K_1 .

◆□▶◆□▶◆□▶◆□▶ □ シペペー

22/40

Accomodation

$$\begin{array}{ll} \frac{d\pi_1(K_1,\rho_1^*,\rho_2^*)}{dK_1} &= \frac{\pi_1(K_1,\rho_1^*,\rho_2^*)}{\partial K_1} - (\rho_1^*\pi^M(c) + (1-\rho_1^*)\pi^M(c(K_1))\frac{\partial \rho_2^*}{\partial K_1} \\ &< \frac{\pi_1(K_1,\rho_1^*,\rho_2^*)}{\partial K_1} \end{array}$$

where
$$\frac{\pi_1(K_1, \rho_1^*, \rho_2^*)}{\partial K_1} = (1 - \rho_1^*)(1 - \rho_2^*) \frac{\partial \pi^M(c(K_1))}{\partial K_1}$$

The accomodation strategy consists in reducing K_1 .

Accomodation

$$\begin{array}{ll} \frac{d\pi_{1}(K_{1},\rho_{1}^{*},\rho_{2}^{*})}{dK_{1}} & = & \frac{\pi_{1}(K_{1},\rho_{1}^{*},\rho_{2}^{*})}{\partial K_{1}} - (\rho_{1}^{*}\pi^{M}(c) + (1-\rho_{1}^{*})\pi^{M}(c(K_{1}))\frac{\partial\rho_{2}^{*}}{\partial K_{1}} \\ & < & \frac{\pi_{1}(K_{1},\rho_{1}^{*},\rho_{2}^{*})}{\partial K_{1}} \end{array}$$

where
$$\frac{\pi_1(\kappa_1, \rho_1^*, \rho_2^*)}{\partial \kappa_1} = (1 - \rho_1^*)(1 - \rho_2^*) \frac{\partial \pi^M(c(K_1))}{\partial K_1}$$

The accomodation strategy consists in reducing K_1 .

Lean and Hungry look

In period 1 firm 1 underinvests in K_1 to commit itself to being more aggressive in its R&D race in period 2. This is the best strategy both to deter entry or accomodate.

(ロ)

23/40

Accomodation

$$\begin{array}{ll} \frac{d\pi_{1}(K_{1},\rho_{1}^{*},\rho_{2}^{*})}{dK_{1}} & = & \frac{\pi_{1}(K_{1},\rho_{1}^{*},\rho_{2}^{*})}{\partial K_{1}} - (\rho_{1}^{*}\pi^{M}(c) + (1-\rho_{1}^{*})\pi^{M}(c(K_{1}))\frac{\partial\rho_{2}^{*}}{\partial K_{1}} \\ & < & \frac{\pi_{1}(K_{1},\rho_{1}^{*},\rho_{2}^{*})}{\partial K_{1}} \end{array}$$

where
$$\frac{\pi_1(\kappa_1,\rho_1^*,\rho_2^*)}{\partial \kappa_1} = (1-\rho_1^*)(1-\rho_2^*)\frac{\partial \pi^M(c(\kappa_1))}{\partial \kappa_1}$$

The accomodation strategy consists in reducing K_1 .

Lean and Hungry look

In period 1 firm 1 underinvests in K_1 to commit itself to being more aggressive in its R&D race in period 2. This is the best strategy both to deter entry or accomodate.

Why? R&D investments are strategic substitutes and the larger K_1 the higher $\pi^M(c(K_1))$ and therefore the lower the incumbent's incentive to invest in period 2 (Arrow replacement effect).

(ロ)

23/40

Entrant's strategy: Judo Economics Strategic Incumbent and entry A taxonomy of incumbent's investments strategies The chain store paradox : A Reputation strategy Contracts to deter entry

24/40

The chain store paradox (Selten, 1978)

An incumbent firm I which owns stores in N markets.

Entrant's strategy: Judo Economics Strategic Incumbent and entry A taxonomy of incumbent's investments strategies The chain store paradox : A Reputation strategy Contracts to deter entry

(日)

24/40

The chain store paradox (Selten, 1978)

An incumbent firm I which owns stores in N markets.
 Entry takes place sequentially

▲□▶▲□▶▲□▶▲□▶ □ のく⊙

24/40

The chain store paradox (Selten, 1978)

- An incumbent firm I which owns stores in N markets.
- Entry takes place sequentially
 - 1. E_1 enters or not in period 1 on a first market.

▲□▶▲□▶▲□▶▲□▶ □ のく⊙

24/40

The chain store paradox (Selten, 1978)

- An incumbent firm I which owns stores in N markets.
- Entry takes place sequentially
 - 1. E_1 enters or not in period 1 on a first market.
 - 2. Another E_2 enters or not on a second market in period 2.

The chain store paradox (Selten, 1978)

- An incumbent firm I which owns stores in N markets.
- Entry takes place sequentially
 - 1. E_1 enters or not in period 1 on a first market.
 - 2. Another E_2 enters or not on a second market in period 2.
 - 3. ...
 - 4. The last E_N enters or not on market N in period N.

९ (^२ 24/40

Without entry the gain of I in each store is: a

- Without entry the gain of I in each store is: a
- ln case of entry, gains of firm I and E_i are:

Choice of I	Fight	Accomodate
Payoffs (I, E_i)	(-1,-1)	(0,b)

- Without entry the gain of I in each store is: a
- ln case of entry, gains of firm I and E_i are:

Table: Payoffs in case of entry

Choice of I	Fight	Accomodate
Payoffs (I, E_i)	(-1,-1)	(0,b)

We solve the game backward.

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● のへで

25/40

- Without entry the gain of I in each store is: a
- ln case of entry, gains of firm I and E_i are:

Choice of I	Fight	Accomodate
Payoffs (I, E_i)	(-1,-1)	(0,b)

- We solve the game backward.
- In period N, if E_N enters, the best choice for player I is to accomodate. Long run consideration do not come in, since after period N the game is over.

<ロ><□><□><□><□><□><□><□><□><□><□><□><□><0<0<25/40

- Without entry the gain of I in each store is: a
- ln case of entry, gains of firm I and E_i are:

Choice of I	Fight	Accomodate
Payoffs (I, E_i)	(-1,-1)	(0,b)

- We solve the game backward.
- In period N, if E_N enters, the best choice for player I is to accomodate. Long run consideration do not come in, since after period N the game is over.
- In period N − 1, a fight in period N − 1 would not deter player N to enter, therefore in N − 1 the best strategy for I is to accomodate.

- Without entry the gain of I in each store is: a
- ln case of entry, gains of firm I and E_i are:

Choice of I	Fight	Accomodate
Payoffs (I, E_i)	(-1,-1)	(0,b)

- We solve the game backward.
- In period N, if E_N enters, the best choice for player I is to accomodate. Long run consideration do not come in, since after period N the game is over.
- In period N − 1, a fight in period N − 1 would not deter player N to enter, therefore in N − 1 the best strategy for I is to accomodate.
- By induction theory, the unique sequential equilibrium is such that in each period t, E_t enters and I accomodates.

- Without entry the gain of I in each store is: a
- ln case of entry, gains of firm I and E_i are:

Choice of I	Fight	Accomodate
Payoffs (I, E_i)	(-1,-1)	(0,b)

- We solve the game backward.
- In period N, if E_N enters, the best choice for player I is to accomodate. Long run consideration do not come in, since after period N the game is over.
- In period N − 1, a fight in period N − 1 would not deter player N to enter, therefore in N − 1 the best strategy for I is to accomodate.
- By induction theory, the unique sequential equilibrium is such that in each period t, E_t enters and I accomodates.
- Selten Paradox (1978): Incomplete information framework, i.e. I can be of type tough or weak with a probability => a reputation issue!!

・ロト・周ト・ヨト・ヨト ヨーのくや

26/40

The chain store game with reputation

Same framework except that I can be tough (on all markets) with probability (p) and weak with proba (1-p)

◆□▶◆□▶◆□▶◆□▶ □ シペペー

26/40

The chain store game with reputation

- Same framework except that I can be tough (on all markets) with probability (p) and weak with proba (1-p)
- Each E_i can be tough with probability (q) and weak with proba (1-q)

◆□▶◆圖▶◆言▶◆言▶ 言 のへの

26/40

The chain store game with reputation

- Same framework except that I can be tough (on all markets) with probability (p) and weak with proba (1-p)
- Each E_i can be tough with probability (q) and weak with proba (1-q)
- **•** Tough I always fights ; Tough *E_i* always enters.

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● のへで

26/40

The chain store game with reputation

- Same framework except that I can be tough (on all markets) with probability (p) and weak with proba (1-p)
- Each E_i can be tough with probability (q) and weak with proba (1-q)
- **•** Tough I always fights ; Tough *E_i* always enters.

Table: Pa	ayoffs	in	case	of	entry
-----------	--------	----	------	----	-------

Choice of a weak I	Fight	Accomodate
Payoffs (I, E_i)	(-1,-1)	(0,b)

◆□▶◆圖▶◆言▶◆言▶ 言 のへの

26/40

The chain store game with reputation

- Same framework except that I can be tough (on all markets) with probability (p) and weak with proba (1-p)
- Each E_i can be tough with probability (q) and weak with proba (1-q)
- **•** Tough I always fights ; Tough *E_i* always enters.

Choice of a weak I	Fight	Accomodate
Payoffs (I, <i>E_i</i>)	(-1,-1)	(0,b)

We solve the game backward.

The case N = 1

It is a one period game \Rightarrow **No reputation effect**.

<ロ> <回> <回> < 三> < 三> < 三> < 三> のへの

27/40

The case N = 1

It is a one period game \Rightarrow **No reputation effect**.

A tough I fights.

A weak I accomodates.

27/40

The case N = 1

It is a one period game \Rightarrow **No reputation effect**.

- A tough I fights.
- A weak I accomodates.

p is the probability that the incumbent is tough.

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● のへで

27/40

The case N = 1

It is a one period game \Rightarrow **No reputation effect**.

- A tough I fights.
- A weak I accomodates.
- p is the probability that the incumbent is tough.
- ▶ When the expected gain of a weak E_1 is -p + (1-p)b > 0, i.e. $p , <math>E_1$ enters. Otherwise, E_1 stays out.

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● のへで

27/40

The case N = 1

It is a one period game \Rightarrow **No reputation effect**.

- A tough I fights.
- A weak I accomodates.
- p is the probability that the incumbent is tough.
- ▶ When the expected gain of a weak E_1 is -p + (1-p)b > 0, i.e. $p , <math>E_1$ enters. Otherwise, E_1 stays out.

• If
$$p < \underline{p} = \frac{b}{b+1}$$
, a weak I gains 0. If $p \ge \underline{p} = \frac{b}{b+1}$, I gains a.

・ロト・(型ト・ミト・ミト・ミークへや)

28/40

The case N = 2

It is a two-period game \Rightarrow **A reputation effect may take place**.

The case N = 2

It is a two-period game \Rightarrow **A reputation effect may take place**.

A tough I fights.
・ロト・周ト・ヨト・ヨト ヨーのくや

28/40

The case N = 2

It is a two-period game \Rightarrow **A reputation effect may take place**.

A tough I fights.

What is the strategy for a weak I?

• If I accomodates in t = 1, then, in t = 2, E_2 knows that I is weak and always enters. The expected gain of a weak I is 0.

◆□▶◆□▶◆□▶◆□▶ □ のへで

28/40

The case N = 2

It is a two-period game \Rightarrow **A reputation effect may take place**.

A tough I fights.

What is the strategy for a weak I?

- If I accomodates in t = 1, then, in t = 2, E₂ knows that I is weak and always enters. The expected gain of a weak I is 0.
- ▶ If I fights in t = 1, and if then in $t = 2 E_2$ believes that I is tough and stays out, the expected gain of a weak I is $-1 + \delta(1 - q)a$ (with the complementary probability q, E_2 is tough and enters).

◆□▶◆□▶◆□▶◆□▶ □ のへで

28/40

The case N = 2

It is a two-period game \Rightarrow **A reputation effect may take place**.

A tough I fights.

What is the strategy for a weak I?

- If I accomodates in t = 1, then, in t = 2, E₂ knows that I is weak and always enters. The expected gain of a weak I is 0.
- ▶ If I fights in t = 1, and if then in $t = 2 E_2$ believes that I is tough and stays out, the expected gain of a weak I is $-1 + \delta(1 - q)a$ (with the complementary probability q, E_2 is tough and enters).

If $-1 + \delta(1-q)a < 0$, there is **No reputation strategy** for a weak I.

The case N = 2

It is a two-period game \Rightarrow **A reputation effect may take place**.

A tough I fights.

What is the strategy for a weak I?

- If I accomodates in t = 1, then, in t = 2, E₂ knows that I is weak and always enters. The expected gain of a weak I is 0.
- ▶ If I fights in t = 1, and if then in $t = 2 E_2$ believes that I is tough and stays out, the expected gain of a weak I is $-1 + \delta(1 q)a$ (with the complementary probability q, E_2 is tough and enters).

If $-1 + \delta(1-q)a < 0$, there is **No reputation strategy** for a weak I.

In t = 1, a weak E_1 enters if p and stays out otherwise.

- If I is weak, he accomodates in t = 1, a weak or tough E_2 enters.
- If I is tough, he fights in t = 1, a weak E_2 stays out.

If $-1 + \delta(1-q)a > 0$, **A reputation strategy** for a weak I may arise.

If $-1 + \delta(1 - q)a > 0$, **A reputation strategy** for a weak I may arise. A weak I wants to fight in t = 1 with a positive probability β to deter entry in t = 2.

◆ロ → ◆ 同 → ◆ 臣 → ◆ 臣 → ○ ● ○ へ ()・

► If *p* > *p*,

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

- If $p > \underline{p}$,
 - If I accomodates in t = 1, a weak E_2 knows that I is weak and always enters. Accomodating in t = 1 brings 0 to I.

(日)

- If $p > \underline{p}$,
 - ▶ If I accomodates in t = 1, a weak E_2 knows that I is weak and always enters. Accomodating in t = 1 brings 0 to I.
 - ▶ If I fights in t = 1, the revised probability that I is tough is $p(tough/fight) = \frac{p}{p+\beta(1-p)} > p > p$ and a weak E_2 stays out. Bayes

◆□▶◆□▶◆□▶◆□▶ □ のへで

If $-1 + \delta(1 - q)a > 0$, **A reputation strategy** for a weak I may arise.

A weak I wants to fight in t = 1 with a positive probability β to deter entry in t = 2. We focus directly on the interesting case in which E_2 is a weak entrant.

► If *p* > *p*,

- If I accomodates in t = 1, a weak E_2 knows that I is weak and always enters. Accomodating in t = 1 brings 0 to I.
- ▶ If I fights in t = 1, the revised probability that I is tough is $p(tough/fight) = \frac{p}{p+\beta(1-p)} > p > p$ and a weak E_2 stays out. Bayes
- ▶ Because fighting in t = 1 always deters entry in t = 2, a weak I always fights ($\beta = 1$) in t = 1 and earns the expected profit : $-1 + \delta(1 q)a > 0$

(ロ) (同) (目) (目) (日) (29/40)

If $-1 + \delta(1 - q)a > 0$, a weak I wants to fight in t = 1 with a positive probability β to deter entry in t = 2.

・ロト・(型ト・ミト・ミト・ミークへで)

30/40

If $-1 + \delta(1 - q)a > 0$, a weak I wants to fight in t = 1 with a positive probability β to deter entry in t = 2. If p < p,

(ロ)

30/40

If $-1 + \delta(1 - q)a > 0$, a weak I wants to fight in t = 1 with a positive probability β to deter entry in t = 2.

▶ If $p < \underline{p}$,

If I fights in t = 1, E₂ then revises its beliefs accordingly and now believes that I is tough with a probability:

 $p(tough/fight) = \frac{p}{p+\beta(1-p)} > p.$

・ロト・周ト・ヨト・ヨト ヨーのくや

30/40

If $-1 + \delta(1 - q)a > 0$, a weak I wants to fight in t = 1 with a positive probability β to deter entry in t = 2.

▶ If $p < \underline{p}$,

- If *I* fights in t = 1, E₂ then revises its beliefs accordingly and now believes that I is tough with a probability:
 p(tough/fight) = p/(p+β(1-p)) > p.
- ▶ In t = 2, still E_2 knows that a weak I accomodates and a tough I fights (last period) but he takes into account the revised probability that *I* is tough p(tough/fight). A weak E_2 is indifferent between entering or not if: $-\frac{p}{p+\beta(1-p)} + (1-\frac{p}{p+\beta(1-p)})b = 0$, i.e. if $\beta^* = \frac{p}{(1-p)b}$.

◆□▶◆□▶◆□▶◆□▶ □ のへで

30/40

If $-1 + \delta(1-q)a > 0$, a weak I wants to fight in t = 1 with a positive probability β to deter entry in t = 2.

▶ If $p < \underline{p}$,

- If *I* fights in t = 1, E₂ then revises its beliefs accordingly and now believes that I is tough with a probability:
 p(tough/fight) = p/(p+β(1-p)) > p.
- ▶ In t = 2, still E_2 knows that a weak I accomodates and a tough I fights (last period) but he takes into account the revised probability that *I* is tough p(tough/fight). A weak E_2 is indifferent between entering or not if: $-\frac{p}{p+\beta(1-p)} + (1-\frac{p}{p+\beta(1-p)})b = 0$, i.e. if $\beta^* = \frac{p}{(1-p)b}$.
- Going backward to t = 1, E_1 knows that I plays this reputation effect to deter entry in t = 2 and therefore anticipates that I fights with a probability $p + (1 p)\beta^* = p\frac{(1+b)}{b}$.

30/40

If $-1 + \delta(1-q)a > 0$, a weak I wants to fight in t = 1 with a positive probability β to deter entry in t = 2.

▶ If $p < \underline{p}$,

- If *I* fights in t = 1, E₂ then revises its beliefs accordingly and now believes that I is tough with a probability:
 p(tough/fight) = p/(p+β(1-p)) > p.
- ▶ In t = 2, still E_2 knows that a weak I accomodates and a tough I fights (last period) but he takes into account the revised probability that *I* is tough p(tough/fight). A weak E_2 is indifferent between entering or not if: $-\frac{p}{p+\beta(1-p)} + (1-\frac{p}{p+\beta(1-p)})b = 0$, i.e. if $\beta^* = \frac{p}{(1-p)b}$.
- Going backward to t = 1, E_1 knows that I plays this reputation effect to deter entry in t = 2 and therefore anticipates that I fights with a probability $p + (1 p)\beta^* = p\frac{(1+b)}{b}$.
- A weak E₁ prefers to stay out if -p^(1+b)/_b + (1 p^(1+b)/_b)b < 0, i.e. if p > (^b/_{1+b})² and I gains a. Otherwise if p < (^b/_{1+b})², a weak E₁ enters and I thus gains β*(-1 + δ(1 q)a) > 0.
 A lower β would reduce I's gains and a higher β cannot block entry of E₂.

Conclusion

Because there are at least two-periods, E_1 anticipates that I has an incentive to create a reputation of being tough in t = 1 to deter entry in t = 2, and therefore E_1 is less likely to enter also in t = 1.

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → 의 < @

Conclusion

Because there are at least two-periods, E_1 anticipates that I has an incentive to create a reputation of being tough in t = 1 to deter entry in t = 2, and therefore E_1 is less likely to enter also in t = 1.

The generalization to any N is possible

Assuming that N = 3, we now find that E_1 enters if and only if $p < (\frac{b}{1+b})^3$ and so on for N = T for $p < (\frac{b}{1+b})^T$.

◆□▶◆□▶◆三▶◆三▶ 三 シペペー

32/40

Contracts to deter entry

(ロ)

32/40

Contracts to deter entry

Vertical contracts between manufacturers and retailers might be used to deter entry.

 For instance bundling or full line forcing practices (Coca-Cola case in Multiproduct pricing class)

(ロ)

32/40

Contracts to deter entry

- For instance bundling or full line forcing practices (Coca-Cola case in Multiproduct pricing class)
- Exclusive dealing contracts: Mars vs HB case.

・ロト・周ト・ヨト・ヨト ヨーのくや

32/40

Contracts to deter entry

- For instance bundling or full line forcing practices (Coca-Cola case in Multiproduct pricing class)
- Exclusive dealing contracts: Mars vs HB case.
 - The case starts in ireland in 1989. Ice-cream bars are mostly sold in gas stations.

(ロ) (回) (三) (三) (三) (三) (○)

32/40

Contracts to deter entry

- For instance bundling or full line forcing practices (Coca-Cola case in Multiproduct pricing class)
- Exclusive dealing contracts: Mars vs HB case.
 - The case starts in ireland in 1989. Ice-cream bars are mostly sold in gas stations.
 - HB (Unilever) has 79% of the ice-cream bar market and, in 1989, Mars enters.

◆□▶◆□▶◆□▶◆□▶ □ のへで

32/40

Contracts to deter entry

Vertical contracts between manufacturers and retailers might be used to deter entry.

 For instance bundling or full line forcing practices (Coca-Cola case in Multiproduct pricing class)

Exclusive dealing contracts: Mars vs HB case.

- The case starts in ireland in 1989. Ice-cream bars are mostly sold in gas stations.
- HB (Unilever) has 79% of the ice-cream bar market and, in 1989, Mars enters.
- HB freely supplies small retailers with freezers. Mars market share rises up to 42%.

Contracts to deter entry

Vertical contracts between manufacturers and retailers might be used to deter entry.

 For instance bundling or full line forcing practices (Coca-Cola case in Multiproduct pricing class)

Exclusive dealing contracts: Mars vs HB case.

- The case starts in ireland in 1989. Ice-cream bars are mostly sold in gas stations.
- HB (Unilever) has 79% of the ice-cream bar market and, in 1989, Mars enters.
- HB freely supplies small retailers with freezers. Mars market share rises up to 42%.
- HB requires exclusivity: only HB ice cream bars are stock in my freezers. Mars's market share decreases to 20%. Mars cannot fight back by offering its own freezers because shops are too small.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ の (0 32/40

Contracts to deter entry

Vertical contracts between manufacturers and retailers might be used to deter entry.

 For instance bundling or full line forcing practices (Coca-Cola case in Multiproduct pricing class)

Exclusive dealing contracts: Mars vs HB case.

- The case starts in ireland in 1989. Ice-cream bars are mostly sold in gas stations.
- HB (Unilever) has 79% of the ice-cream bar market and, in 1989, Mars enters.
- HB freely supplies small retailers with freezers. Mars market share rises up to 42%.
- HB requires exclusivity: only HB ice cream bars are stock in my freezers. Mars's market share decreases to 20%. Mars cannot fight back by offering its own freezers because shops are too small.
- The European Court of Justice confirms the EC's prohibition of free freezers in 2003.

A taxonomy of incumbent's investments strategies The chain store paradox : A Reputation strategy Contracts to deter entry

▲□▶▲□▶▲□▶▲□▶ □ のく⊙

33/40

Exercice 2: Aghion and Bolton (1987)

A taxonomy of incumbent's investments strategies The chain store paradox : A Reputation strategy Contracts to deter entry

▲□▶▲□▶▲□▶▲□▶ □ のく⊙

33/40

Exercice 2: Aghion and Bolton (1987)

M sells a good to *A* who is willing to pay at most p = 1 for one unit. The unit cost of *M* is $c_M = \frac{1}{2}$. An entrant, *E* can produce the same good at an unknown unit cost c_E uniformly distributed over [0, 1].

- In t = 0, A and M sign a contract or not;

▲□▶▲□▶▲□▶▲□▶ □ のく⊙

33/40

Exercice 2: Aghion and Bolton (1987)

- In t = 0, A and M sign a contract or not;
- In t = 1, E observes the contract, learns its unit cost c_E and chooses to enter or not.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ → ○ ○ ○

33/40

Exercice 2: Aghion and Bolton (1987)

- In t = 0, A and M sign a contract or not;
- In t = 1, E observes the contract, learns its unit cost c_E and chooses to enter or not.
- In t = 2, firms set their prices.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ → ○ ○ ○

33/40

Exercice 2: Aghion and Bolton (1987)

- In t = 0, A and M sign a contract or not;
- In t = 1, E observes the contract, learns its unit cost c_E and chooses to enter or not.
- In t = 2, firms set their prices.
- In t = 3, A decides where to buy.

1 Without contract, the competition is a la Bertrand.

Entrant's strategy: Judo Economics Strategic Incumbent and entry Contracts to deter entry

- 1 Without contract, the competition is a la Bertrand.
- a. Determine the equilibrium and the probability ϕ of entry.

Entrant's strategy: Judo Economics Strategic Incumbent and entry Contracts to deter entry

- 1 Without contract, the competition is a la Bertrand.
- a. Determine the equilibrium and the probability ϕ of entry. Bertrand

 $\Rightarrow p^* = max\{c_E, c_M\}$. E enters only if $c_E < c_M$.

Entrant's strategy: Judo Economics Strategic Incumbent and entry Contracts to deter entry

- 1 Without contract, the competition is a la Bertrand.
- a. Determine the equilibrium and the probability ϕ of entry. Bertrand

$$\Rightarrow p^* = max\{c_E, c_M\}$$
. E enters only if $c_E < c_M$.

The probability of entry is $\phi = P(c < c_M) = c_M = \frac{1}{2}$.

The situation is efficient, the firm who produces is the firm with the lowest unit cost.

<ロ><同><同><目><日><日><日><日><日><日><日><日><日><日><日><10</td>
- 1 Without contract, the competition is a la Bertrand.
- a. Determine the equilibrium and the probability ϕ of entry. Bertrand

 $\Rightarrow p^* = max\{c_E, c_M\}$. E enters only if $c_E < c_M$.

The probability of entry is $\phi = P(c < c_M) = c_M = \frac{1}{2}$.

The situation is efficient, the firm who produces is the firm with the lowest unit cost.

b. What are the expected profits?

- 1 Without contract, the competition is a la Bertrand.
- a. Determine the equilibrium and the probability ϕ of entry. Bertrand

$$\Rightarrow p^* = max\{c_E, c_M\}$$
. E enters only if $c_E < c_M$.

The probability of entry is $\phi = P(c < c_M) = c_M = \frac{1}{2}$.

The situation is efficient, the firm who produces is the firm with the lowest unit cost.

b. What are the expected profits? The expected profits are:

$$\Pi_M = \phi 0 + (1 - \phi)(1 - c_M) = \frac{1}{4},$$

- 1 Without contract, the competition is a la Bertrand.
- a. Determine the equilibrium and the probability $\boldsymbol{\phi}$ of entry. Bertrand

$$\Rightarrow p^* = max\{c_E, c_M\}$$
. E enters only if $c_E < c_M$.

The probability of entry is $\phi = P(c < c_M) = c_M = \frac{1}{2}$.

The situation is efficient, the firm who produces is the firm with the lowest unit cost.

b. What are the expected profits? The expected profits are:

$$\Pi_M = \phi 0 + (1 - \phi)(1 - c_M) = \frac{1}{4},$$

$$\Pi_E = \int_0^{c_M} (c_M - c) dc + 0 = rac{c_M^2}{2} = rac{1}{8},$$

- 1 Without contract, the competition is a la Bertrand.
- a. Determine the equilibrium and the probability $\boldsymbol{\phi}$ of entry. Bertrand

$$\Rightarrow p^* = max\{c_E, c_M\}$$
. E enters only if $c_E < c_M$.

The probability of entry is $\phi = P(c < c_M) = c_M = \frac{1}{2}$.

The situation is efficient, the firm who produces is the firm with the lowest unit cost.

b. What are the expected profits? The expected profits are:

$$\Pi_M = \phi 0 + (1 - \phi)(1 - c_M) = \frac{1}{4};$$

$$\Pi_{E} = \int_{0}^{c_{M}} (c_{M} - c) dc + 0 = \frac{c_{M}^{2}}{2} = \frac{1}{8},$$
$$\Pi_{A} = \phi(1 - c_{M}) + (1 - \phi)0 = c_{M}(1 - c_{M}) = \frac{1}{4}.$$

- 1 Without contract, the competition is a la Bertrand.
- a. Determine the equilibrium and the probability ϕ of entry. Bertrand

$$\Rightarrow p^* = max\{c_E, c_M\}$$
. E enters only if $c_E < c_M$.

The probability of entry is $\phi = P(c < c_M) = c_M = \frac{1}{2}$.

The situation is efficient, the firm who produces is the firm with the lowest unit cost.

b. What are the expected profits? The expected profits are:

$$\Pi_M = \phi 0 + (1 - \phi)(1 - c_M) = \frac{1}{4},$$

$$\Pi_E = \int_0^{c_M} (c_M - c) dc + 0 = rac{c_M^2}{2} = rac{1}{8},$$

$$\Pi_A = \phi(1 - c_M) + (1 - \phi)0 = c_M(1 - c_M) = \frac{1}{4}$$

$$W = \Pi_M + \Pi_E + \Pi_A = \frac{5}{8}$$

2 M offers a take-it-or-leave-it contract (P, P_0) where P is the price that A must pay if he chooses to buy the good from M and P_0 is the penalty A must pay to M if he buys from E.

(ロ)

- 2 M offers a take-it-or-leave-it contract (P, P_0) where P is the price that A must pay if he chooses to buy the good from M and P_0 is the penalty A must pay to M if he buys from E.
- a. Given (P, P_0) , under which conditions does *E* enter?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ → ○ < ○

- 2 M offers a take-it-or-leave-it contract (P, P_0) where P is the price that A must pay if he chooses to buy the good from M and P_0 is the penalty A must pay to M if he buys from E.
- a. Given (P, P_0) , under which conditions does *E* enter?

 $\Pi_A = 1 - P_0 - P_E$ if he buys from *E*.

◆□▶◆□▶◆□▶◆□▶ □ シペペー

- 2 M offers a take-it-or-leave-it contract (P, P_0) where P is the price that A must pay if he chooses to buy the good from M and P_0 is the penalty A must pay to M if he buys from E.
- a. Given (P, P_0) , under which conditions does *E* enter?

 $\Pi_A = 1 - P_0 - P_E$ if he buys from *E*.

 $\Pi_A = 1 - P$ if he buys from *M*.

・ロト・周ト・ヨト・ヨト ヨーのくや

- 2 M offers a take-it-or-leave-it contract (P, P_0) where P is the price that A must pay if he chooses to buy the good from M and P_0 is the penalty A must pay to M if he buys from E.
- a. Given (P, P_0) , under which conditions does *E* enter?

$$\Pi_A = 1 - P_0 - P_E$$
 if he buys from *E*.

 $\Pi_A = 1 - P$ if he buys from *M*.

Therefore A buys from E if $c_E \leq P_E \leq P - P_0$ i.e. $P - P_0 \geq c_E$ and in that case $P_E = P - P_0$.

(ロ)

- 2 M offers a take-it-or-leave-it contract (P, P_0) where P is the price that A must pay if he chooses to buy the good from M and P_0 is the penalty A must pay to M if he buys from E.
- a. Given (P, P_0) , under which conditions does *E* enter?

$$\Pi_A = 1 - P_0 - P_E$$
 if he buys from *E*.

 $\Pi_A = 1 - P$ if he buys from *M*.

Therefore A buys from E if $c_E \le P_E \le P - P_0$ i.e. $P - P_0 \ge c_E$ and in that case $P_E = P - P_0$.

b. What is the profit of A if he accepts a contract (P, P_0) ?

・ロト・周ト・ヨト・ヨト ヨーのくや

- 2 M offers a take-it-or-leave-it contract (P, P_0) where P is the price that A must pay if he chooses to buy the good from M and P_0 is the penalty A must pay to M if he buys from E.
- a. Given (P, P_0) , under which conditions does *E* enter?

$$\Pi_A = 1 - P_0 - P_E$$
 if he buys from *E*.

 $\Pi_A = 1 - P$ if he buys from *M*.

Therefore A buys from E if $c_E \leq P_E \leq P - P_0$ i.e. $P - P_0 \geq c_E$ and in that case $P_E = P - P_0$.

b. What is the profit of A if he accepts a contract (P, P_0) ?

$$\Pi_A = \frac{1}{4}$$
 without contract.

With the contract,

 $\Pi_A(P, P_0) = (P - P_0)(1 - P_E - P_0) + (1 - P + P_0)(1 - P) = 1 - P$ (as $P_E = P - P_0$).

<ロ><同><同><目><日><日><日><日><日><日><日><日><日><10</td>

A accepts the contract only if $1 - P \ge \frac{1}{4} \Rightarrow P \le \frac{3}{4}$.

Solution

c. Determine the optimal contract (P, P_0) for M.

$$\Pi_M(P, P_0) = (P - P_0)P_0 + (1 - P + P_0)(P - C_M)$$

$$\frac{\partial \Pi(P, P_0)}{\partial P_0} = -2P_0 + P + P - c_M = 0$$

Replacing $c_M = \frac{1}{2}$, we obtain:

$$\Rightarrow P_0 = P - \frac{1}{4}.$$

For $P_0 = P - \frac{1}{4}$, the profit of *M* is $\frac{1}{4}(P - \frac{1}{4}) + \frac{3}{4}(P - \frac{1}{2}) = P - \frac{7}{16}$.

However we know that $P \geq \frac{3}{4}$ to be accepted by A.

The optimal contract is thus $P = \frac{3}{4}$, $P_0 = \frac{1}{2}$.

With the exclusive dealing contract, the probability of entry is reduced to $\frac{1}{4}$.

Solution

d. What are the expected profits under this contract? Comment! Expected profits are:

$$\Pi_{M} = (1 - \frac{1}{4})(\frac{3}{4} - c_{M}) + \frac{1}{4}\frac{1}{2} = \frac{5}{16} > \frac{1}{4},$$

$$\Pi_{E} = (1 - \frac{1}{4})0 + \int_{0}^{\frac{1}{4}}(\frac{1}{4} - c)dc = \frac{1}{32} < \frac{1}{8},$$

$$\Pi_{A} = (1 - \frac{1}{4})(1 - \frac{3}{4}) + \frac{1}{4}(1 - \frac{3}{4}) = \frac{1}{4}.$$

$$W = \frac{19}{32} < \frac{5}{8}$$

Solution

d. What are the expected profits under this contract? Comment! Expected profits are:

$$\Pi_{M} = (1 - \frac{1}{4})(\frac{3}{4} - c_{M}) + \frac{1}{4}\frac{1}{2} = \frac{5}{16} > \frac{1}{4},$$
$$\Pi_{E} = (1 - \frac{1}{4})0 + \int_{0}^{\frac{1}{4}}(\frac{1}{4} - c)dc = \frac{1}{32} < \frac{1}{8},$$
$$\Pi_{A} = (1 - \frac{1}{4})(1 - \frac{3}{4}) + \frac{1}{4}(1 - \frac{3}{4}) = \frac{1}{4}.$$
$$W = \frac{19}{32} < \frac{5}{8}$$

The welfare decreases because efficient entries are blockaded.

・ロト・(型ト・ミト・ミト・ミークへや)

▲□▶▲□▶▲□▶▲□▶ □ のく⊙

38/40

References

- Fudenberg, D. and J. Tirole (1991), "Game Theory", MIT Press, Chapter 9.
- Gelman, J. and S. Salop (1983), "Judo Economics: Capacity Limitation and Coupon Competition", *The Bell Journal of Economics*, 14, 2, p315-325.
- Selten, R. (1978), "The Chain Store Paradox", Theory and Decision, 9, p127-159.

back

Two events A and B respectively occur with probability p(A) and p(B). Bayes's rule is as follows:

$$p(A/B) = rac{p(B/A)P(A)}{p(B)}$$

where conditional probabilities:

- ▶ p(A/B) is the likelihood of event A occurring given that B is true;
- ▶ p(B/A) is the likelihood of event B occurring given that A is true.

◆□▶◆□▶◆□▶◆□▶ □ シペペー